
Final Report
Cryptography and Number Theory Boot Camp NSF-REU

Angel Agüero ∗ Mahmoud El-Kishky † Dietrich Jenkins ‡

Catherine Marin King† Asa Linson† Enrique Salcido∗

Kaitlin Tademy §

Summer 2017

Abstract

In this manuscript, we describe several cryptosystems in detail, and detail the
mathematics behind them. This includes the extensive application of topics from
abstract algebra and number theory, including a detailed study of elliptic curves.
Finally, we introduce a new cryptosystem based on the theory of elliptic curves,
carefully describing what makes it mathematically secure.

•

•

•

•

∗University of Texas at El Paso
†University of Texas at Tyler
‡University of Kansas
§Sam Houston State University

1

Cryptography and Number Theory Boot Camp NSF-REU 2

Contents

1 Introduction 3
1.1 Modular arithmetic . 3
1.2 Public key cryptography . 4
1.3 The RSA cryptosystem . 4
1.4 Discrete logarithm problem . 5
1.5 Diffie-Hellman key exchange . 5
1.6 ElGamal encryption . 6

2 Factoring 7
2.1 Naive factoring method . 7
2.2 Pollard’s p− 1 factoring algorithm . 7

3 Elliptic curves 8
3.1 Addition law on an elliptic curve . 10
3.2 Elliptic curves modulo a prime . 12
3.3 Elliptic curve Diffie-Hellman key exchange 13
3.4 Elliptic curve ElGamal encryption . 14
3.5 Lenstra’s elliptic curve factoring algorithm 14

4 A new elliptic curve public key cryptosystem 16
4.1 Encryption and decryption . 16
4.2 Security of the cryptosystem . 17

5 Python code implementations 17

2

Cryptography and Number Theory Boot Camp NSF-REU 3

Introduction

Modular arithmetic

Modular arithmetic, the theory of congruence modulo an integer, is vital to the
functionality of many cryptosystems. Given integers a and b, and a positive integer n,
we say that a is congruent to b modulo n, and write

a ≡ b mod n,

if n | (b− a). Notice that a ≡ 0 mod n if and only if n | a.
Modular arithmetic relies on four basic properties, which make it an equivalence

relation on Z.

Proposition 1. For all integers a, b, and c, and a positive integer n, the following
hold.

(1) (Reflexivity) a ≡ a mod n.

(2) (Symmetry) a ≡ b mod n if and only if b ≡ a mod n.

(3) (Transitivity) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

In addition to these properties, the following facts help us perform arithmetic mod-
ulo n.

Proposition 2. Given integers a, b, c, and d, and a positive integer n, if a ≡ b mod n
and c ≡ d mod n, then

(1) a± c ≡ b± d mod n, and

(2) ac ≡ bd mod n.

Division in modular arithmetic is more complex. Conceptually, division for real
numbers can be thought of as multiplying by a reciporical; this motivates the analogue
for modular arithmetic. Given integers a and n > 0, an integer b is the multiplicative
inverse of a modulo n if ab ≡ 1 mod n. An integer a has a multiplicative inverse
modulo n if and only if a and n are relatively prime. Multiplicative inverses are unique
modulo n in the sense that any two multiplicative inverses are congruent modulo n.

To find a multiplicative inverse of a modulo n, we know that (a, n) = 1, and we
can find such an inverse using the extended Euclidean Algorithm. We illustrate this
method via the following example.

Example 3. Given the modulus n = 44 and the integer a = 35, the Euclidean Algo-
rithm is performed as follows:

44 = 35 · 1 + 9

35 = 9 · 3 + 8

9 = 8 · 1 + 1

3

Cryptography and Number Theory Boot Camp NSF-REU 4

Since the last nonzero remainder equals one, this verifies that a and n are relatively
prime.

From here, using back substitution, we can find integers x and y for which ax+ny =
1, which are ensured to exist by Bézout’s Theorem.

1 = 9− 8 · 1
1 = 9− (35− 9 · 3) · 1
1 = 9 · 4− 35 · 1
1 = (44− 35 · 1) · 4− 35 · 1
1 = 44 · 4− 35 · 5

We conclude that x = 4 and y = −5. Moreover, this equation tells us that

35 · −5 ≡ 1 mod 44,

and we see that −5 ≡ 39 mod 44 is the multiplicative inverse of 35 modulo 44.

Remark 4. The greatest common divisor of two integers is the largest divisor of both
numbers. The Euclidean algorithm is one of most effective means of finding a greatest
common divisor. For this reason, this algorithm is particularly relevant to our study of
cryptography. For example, in cryptosystems such as RSA, multiplicative inverses are
used critically in both securing communications via insecure channels, and in breaking
these same types of codes.

Public key cryptography

Public key cryptography refers to the process of securely sending messages with an
encryption key that is made public. In order for this type of message exchange to be
successful, some information is public, while other information must be kept private.
It is necessary to strategically choose which information is made public, and which is
kept private so that it is nearly impossible to break the cryptosystem using only public
information. Anyone may encrypt a message using the public key(s), but for a message
to be decoded, one must use a private decryption key known only to the receiver.

The goal is for encryption to be rather simple but decryption to be computationally
difficult: the security in such a cryptosystem typically relies on a mathematical process
that is relatively easy to perform, but for which there is no known way to invert
efficiently. In ideal cases, the time taken to break a system should be astronomical.

In describing a public key cryptosystem, we often represent the the sender by the
name “Alice,” and the receiver by “Bob,” respectively, and use the name “Eve” to
represent an entity that may eavesdrop on the message in the public channel through
which data is passed. We refer the reader to the texts [2] and [3] as references for the
cryptosystems we describe.

The RSA cryptosystem

The RSA Cryposystem is named after its creators: Rivest, Shamir, and Adleman.
It is an example of a public key cryptosystem, so that the data needed to encrypt a

4

Cryptography and Number Theory Boot Camp NSF-REU 5

message is public, so anyone can encrypt a message. On the other hand, only one
party, Alice, has the private information necessary to decrypt messages.

To begin, Alice chooses two large, distinct primes p and q with product n = pq. If φ
denotes Euler’s phi function, which computes the number of positive integers less than
a given integer that are relatively prime to it (therefore, counting the units modulo
that integer), Alice can easily calculate

φ(n) = φ(pq) = φ(p)φ(q) = (p− 1)(q − 1).

She selects any unit modulo φ(n), and calls it e; this will be the “encryption exponent.”
She then uses the Euclidean Algorithm to find the inverse of e modulo n, and calls it
d; this will be the “decryption exponent.”

Alice then transmits the pubic data, which consists of the pair (n, e), via the un-
secured public channel. Encryption is given by following instructions: To encrypt a
message, break it into blocks of size less than n. To encrypt a block m, transmit
0 ≤ y < n, where y ≡ me mod n.

To decrypt a message, Alice raises the encrypted message to the decryption expo-
nent d modulo n:

yd ≡ (me)d ≡ med mod n.

Since ed ≡ 1 mod φ(n), we know that ed = 1+φ(n)k for some k ∈ Z. By substitution,
we see that

med ≡ m(1+φ(n)k) ≡ m ·mφ(n)k ≡ m · (mφ(n))k ≡ m · 1k ≡ m mod n,

where the second to last congruence holds by Euler’s Theorem.
The security of RSA lies in the difficulty of factoring the large integer n, i.e., finding

the primes p and q, given n. For example, if p and q are both approximately 150 digits,
then with current computational power, it would take approximately 600,000 years to
factor n!

Discrete logarithm problem

Like factoring large numbers with large factors, the discrete logarithm problem is
computationally very difficult, and is used in other public key cryptosystems: solving
for x in the equation

β ≡ αx mod p,

where α and β are nonzero integers, and p is a prime. Usually, α is chosen to be a
primitive root modulo p, so that a solution x must exist. However, if p is very large,
it is typically very difficult to find x. The discrete logarithm problem is applied in
the Diffie-Hellman public key exchange, and the related ElGamal encryption scheme,
which we now describe.

Diffie-Hellman key exchange

The goal of the Diffie-Hellman key Exchange is for the two parties, Alice and Bob,
to agree on a secret key by only passing data through a public channel. Implementation

5

Cryptography and Number Theory Boot Camp NSF-REU 6

of the Diffie-Hellman key Exchange begins with first choosing a large prime number p,
which will serve as modulus, and g, a primitive root modulo p. The integers p and g
are made public.

Next, Alice chooses a secret positive integer x. Alice then calculates the least
non-negative residue of χ modulo p:

χ ≡ gx mod p.

The integer χ is then sent over the public channel to Bob, who keeps it for future
calculations. Meanwhile, Bob chooses a positive integer y, which he keeps secret, and
calculates the least non-negative residue

Y ≡ gy mod p.

The he sends Y across the public channel to Alice.
Alice now computes the key k as the least non-negative residue of Yx modulo p.

Notice that
k ≡ Yx ≡ (gy)x ≡ gxy mod p,

which means that Bob to can also calculate k as

χy ≡ (gx)y ≡ gxy ≡ k mod p.

Therefore, Alice and Bob have agreed on a secret key k, whose privacy relies on the
difficulty of the discrete logarithm problem.

ElGamal encryption

The Diffie-Helleman key exchange is the basis for the ElGamal encryption scheme.
The distinction between Diffie-Hellman and ElGamal comes from ElGamal’s ability
to transfer a message based on the key shared by the sender and receiver via Diffie-
Hellman.

Suppose that the parties agree on the key k using Diffie-Hellman. To describe
encryption using ElGamal, suppose we aim to transmit the plaintext message m. To
encrypt, we multiply m by the key k, and find its least non-negative residue modulo
the fixed public prime number p > k. This gives you the encrypted message n, where

n ≡ mk mod p.

To decrypt a message, first find the multiplicative inverse of the key k modulo p,
which can be done using the Extended Euclidean Algorithm. Call the inverse ℓ, so that

ℓk ≡ 1 mod p.

Then to see that encrypting, and then decrypting results in the original message, we
calculate that

ℓn ≡ ℓ(mk) ≡ (ℓk)m ≡ m mod p.

6

Cryptography and Number Theory Boot Camp NSF-REU 7

Factoring

Many cryptosystems, such as RSA, rely on the fact that it is significantly computa-
tionally difficult to factor a large composite, especially when it is the product of large
primes. Given a composite integer that we would like to factor non-trivially, there are
several factoring methods that can be used. In order to build a secure cryptosystem
that relies on the difficulty of factoring, it is be imperative to chose an integer that is
difficult to factor, even using the information in the cryptosystem that is made public.

In this paper, we will discuss three factoring methods: the naive method, Pollard’s
p − 1 factoring algorithm, and Lenstra’s elliptic curve factoring algorithm. Note that
we wait to discuss the last factoring method until Subsection 3.5, since it relies on the
theory of groups defined by elliptic curves.

Naive factoring method

To factor an integer n > 1, the naive factoring method is implemented by checking
if any positive integer from 1 to ⌊

√
n⌋ divides n. This is a sure method that will either

find a factor of n, or show that n is prime. For example, if we want to find a factor
of 26, then we check whether each positive integer from 1 to 5 is a factor, using the
division algorithm. In doing so, we will find that 2 divides 26.

Although the naive methods always results in a factor if n is composite, it becomes
quite tedious and inefficient for n large; for example, if n an 100-digit integer. Therefore,
it is pertinent that we use a more efficient method to factor large composite integers,
if possible.

Pollard’s p− 1 factoring algorithm

The goal of Pollard’s p − 1 factoring algorithm is to find a non-trivial factor a
positive composite integer n, and is performed as follows:

1. Choose a small integer 1 < a < n.

2. Find gcd(a, n).

• If gcd(a, n) ̸= 1, then gcd(a, n) | n. In other words, gcd(a, n) is a nontrivial
factor of n.

• If gcd(a, n) = n, a trivial factor, the algorithm terminates.

• Otherwise, gcd(a, n) = 1, again a trivial factor. In this case, recursively

7

Cryptography and Number Theory Boot Camp NSF-REU 8

calculate the following sequence:

a1 ≡ a mod n

a2 ≡ a21 mod n

a3 ≡ a32 mod n

a4 ≡ a43 mod n

...
ai ≡ aii−1 mod n

• Find gcd(ai − 1, n) for each i until gcd(ai − 1, n) ̸= 1 or n for some i > 0.

3. If p is a prime factor of n and B is a positive integer for which (p − 1) | B!,
then this algorithm terminates in at most B steps. However, it is possible that
the greatest common divisor computed equals n, so that we do not obtain a
non-trivial factor of n. In this case, we can choose a new a value and repeat the
process.

For example, let n = 901.

1. We choose a = 2.

2. We calculate gcd(2, 901) = 1.

3. Then, we find a2 ≡ 22 ≡ 4 mod 901, and calculate that gcd(3, 901) = 1.

4. Next, we find a3 ≡ 43 ≡ 64 mod 901 and calculate that gcd(63, 901) = 1.

5. Finally, we find a4 ≡ 644 ≡ 596 mod 901 and calculate that gcd(595, 901) =
17 ̸= 1. Thus, 17 is a factor of 901, and we can factor 901 as

901 = 17 · 53.

6. Note that since p = 17, p − 1 = 16 and (p − 1) | B!, where B = 6. This verifies
that the algorithm terminated in 4 < 6 = B steps.

Due to the number of steps required, in general, Pollard’s p − 1 Algorithm is quicker
and more efficient than the naive factoring method.

Elliptic curves

An elliptic curve is a curve defined by an equation of the form

y2 = x3 + ax2 + bx+ c, (3.1)

where the coefficients a, b, and c are elements of some fixed ambient field. When
working over the rational numbers Q or the real numbers R, these curves can be

8

Cryptography and Number Theory Boot Camp NSF-REU 9

plotted on the xy−plane, and when considered in this way, the resulting curves are
symmetric about the x-axis due to the y2 term on the equation’s left-hand side.

The main goal in this section is to use an elliptic curve to create an abelian group.
The set of elements E of the group consists of all points (x, y) satisfying the equation
(3.1), along with an additional element denoted by the symbol “∞,” and often called
the “point at infinity.” Shortly, we will explicitly define an operation on E, which we
call addition and likewise denote “+.” This operation satisfies the group axioms, and
makes the element ∞ the group’s additive identity.

Roughly, adding two points in E that are solutions to equation (3.1) (that is, that
are not ∞) amounts to finding the unique line determined by these two points, and
then solving for the third point on the line that also intersects the curve. The sum of
the two points in question is defined as the additive inverse of the third point on the
intersection of the line and the curve.

In this discussion, it is important to notice that almost every pair of distinct points
on the curve determine a line that passes through the curve at a third point, after one
accounts for multiplicities. Indeed, the only exceptions to this are pairs of points that
are reflections of one another other across the x-axis. However, it turns out that the
sum of such points is defined in a particularly simple way.

We emphasize the term “distinct” in the previous paragraph, so that it makes sense
to refer to the unique line through both points. When instead the two points are
equal, a case we encounter in adding a point to itself, our alternative is to consider
the tangent line to the curve at this point. However, this breaks down when the curve
given by (3.1) has a singular point, a points for which there exists no unique tangent
line. A curves that contain a singular point is called a singular curve. An elliptic curve
is singular precisely if its discriminant ∆ = a2b2−4a3c−27c2+18abc (with coefficients
as in (3.1)) is zero. Note that the discriminant is the square of the product of the
differences of all pairs of roots of the right-hand side of the equation (3.1), so a curve
is singular if and only if the right-hand side has a double (or triple) root.

Throughout our discussion of elliptic curves in this manuscript, we consider only
non-singular elliptic curves, although we could simply remove the singular point from
the set E, and the remaining elements form a group under the same addition conven-
tions.

In the figure below, we illustrate a singular curve with singular point P . Notice
that there is no unique tangent line to the graph at this point.

x

y

P

y2 = x3 − x

9

Cryptography and Number Theory Boot Camp NSF-REU 10

As noted above, the identity element of the group on the set E is defined to be the
element ∞ ∈ E. Geometrically, if we project the xy−plane onto a sphere, the point
at which the sphere closes can be thought of as the “point at infinity,” and we can
think of this as a point lying on any vertical line. Since ∞ is the identity of the group,
P +∞ = P for every P ∈ E, and ∞ = −∞.

The additive inverse of a point P = (x, y) on E satisfying equation (3.1) is obtained
from P by negating the y coordinate of the point; i.e., −P = (x,−y). Geometrically,
this amounts to reflecting P over the x-axis. For example, consider the point P = (1, 3)
on the elliptic curve defined by the equation y2 = x3 + 8. Then −P = (1,−3), which
also satisfies this equation.

For this definition of additive inverses to be consistent with the group axioms, given
any point P ∈ E, then we must have that P + (−P) = ∞. Geometrically, the line
passing through two points that are additive inverses is vertical. Therefore, this line
intersects the curve in only these two points, so that the other point it “intersects”
must be the “point at infinity,” our group’s additive identity.

Addition law on an elliptic curve

It remains to precisely define the sum of two arbitrary points on an elliptic curve
E, when neither point is the additive identity ∞. In what follows, we describe addition
via three cases, providing equations to calculate the resulting point. In each case, we
include a figure illustrating the addition geometrically.

Throughout, we make the convention that P = (xP , yP) and Q = (xQ, yQ) are
points on an elliptic curve E given by equation (3.1).

Case 1: xP ̸= xQ.

In this setting, first find the unique line that intersects these two points,

y =

(
yQ − yP
xQ − xP

)
(x− xP) + yP .

Note that since xP ̸= xQ, the slope of this line is finite. Next, find the unique third
point R = (xR, yR) on the intersection of this line and the curve given by (3.1), which
can be found to have coordinates

xR =

(
yQ − yP
xQ − xP

)2

− a− xP − xQ, and

yR =

(
yQ − yP
xQ − xP

)
(xR − xP)− yP ,

noting that a is the coefficient of the x term in (3.1). In this case, P +Q is defined as

10

Cryptography and Number Theory Boot Camp NSF-REU 11

−R = (xR,−yR), so that its y−coordinate is
(

yQ−yP
xQ−xP

)
(xP − xR)− yP .

x

y

P
Q

P +Q = −R

R

Case 2: P = Q.

In this case, we must define 2P = P + P , where P is a solution to (3.1). The slope of
the tangent line to P , y′(P), can be thought of as a type of replacement for the slope of
line line between P and Q from Case 1. The value of y′(P) can be found by implicitly
differentiating the equation (3.1), and if yP ̸= 0, can be found to equal

y′(P) =
f ′(xP)

2yP
=

3x2
P + 2axP + b

2yP
, (3.2)

where f(x) = x2 + ax + b is the right-hand side of (3.1). If yP ̸= 0, in an analogous
way to Case 1, we define 2P to be the additive inverse of the third point on tangent
line to P that intersects the curve, which will have coordinates

x2P = (y′(P))2 − a− 2xP , and (3.3)
y2P = (y′(P))(xP − x2P)− yP . (3.4)

x

y

P

2P

On the other hand, remaining in Case 2, suppose that yP = 0. Since we only
consider non-singular curves in our discussion, we require that there be a unique tangent

11

Cryptography and Number Theory Boot Camp NSF-REU 12

line to the graph of equation (3.1) at P . Since the slope of this line is f ′(xP)
2yP

by (3.2), we
must have that f ′(xP) ̸= 0, so that the slope is infinite and the tangent line is vertical.
In this case, we define 2P to be ∞.

x

y

P

Case 3: P = −P , but P ̸= Q.

Notice that in this case, x−P = xP , but y−P = −yP are distinct. Geometrically, this
means that the line passing through these two points is vertical. We define P +(−P) =
∞, which must hold because −P is the additive inverse of P in the group.

x

y

P

−P

Elliptic curves modulo a prime

When a, b, and c are integers, the equation (3.1) defining an elliptic curve equation
can be considered modulo a prime number p,

y2 ≡ x3 + ax2 + bx+ c mod p. (3.5)

There are clearly only finitely many solutions to this equation, which makes solutions
very different than solutions over Q or R.

12

Cryptography and Number Theory Boot Camp NSF-REU 13

Let E(p) denote the set of all solutions to (3.5), along with another point denoted
“∞.” Interestingly, E(p) is a group under the same addition law as for the original ellip-
tic curve, when division by an integer is replaced by a product with the multiplicative
inverse of this integer. The slopes and derivatives can be calculated using the equations
stated above, but now we do not have a well-defined geometric representation. The
elliptic curve E(p) is non-singular if the discriminant ∆ of E is not a multiple of p.

The group E(p) is called the reduction of the elliptic curve E modulo p. Elliptic
curve groups modulo a prime are integral to elliptic curve cryptography, as we begin
to see in the next subsection.

Elliptic curve Diffie-Hellman key exchange

Like the traditional version, the Elliptic Curve Diffie-Hellman key exchange provides
two parties the ability to agree on a shared private key, but this process uses an elliptic
curve modulo a prime. Using this key, like its counterpart, Elliptic Curve ElGamal
then enables secret communications over a public channel.

As in the original Diffie-Hellman key exchange, the two parties, Alice and Bob, and
first aim to agree on a secret key. In order to do this, both parties first agree on large
prime p, and a basepoint G on the the elliptic curve E(p) defined by the equation
y2 ≡ x3 + ax2 + bx+ c mod p. This information is public.

Next, Alice and Bob will each select a random positive integer as their private key.
Suppose Alice has private key nA, and Bob has private key nB. Alice then calculates
nAG (i.e., G added nA times), and Bob calculates nBG (G added nB times), and these
two points on E(p) are published publicly.

The private key known only to Alice and Bob is a point on E(p). In order to find
this shared key, each party will add the other party’s public key (a point of the elliptic
curve E(p)) to itself the number of times determined by their own private.

More specifically, Alice takes the public key nBG ∈ E(p) and adds it to itself nA

times. Likewise, Bob takes the public key nAG, and adds it to itself nB times. Since

nA(nBG) ≡ nB(nAG) mod p.

both Alice and Bob know this common point on E(p), and call this shared private key
K.

To see how the Elliptic Curve Diffie-Hellman key exchange works in practice, con-
sider the following example.

Example 5. We choose the prime p = 7177, so that our elliptic curve E will be defined
by the equation

y2 ≡ x3 + 8 mod 7177.

Our selected basepoint is G = (1, 3). Once again, the private key for each party is cho-
sen as an integer between 1 to p− 1 = 7176. We choose nA = 111 and nB = 24. Using
their own private key, each party can then generate their public key: Alice publishes
111G = (6350, 1252) and, and Bob publishes 24G = (3705, 5105) publicly. Finally, Al-
ice finds 24(111G) = 24(6350, 1252) and Bob finds 111(24G) = 111(3705, 5105), both
resulting in the shared private key K = (11 · 24)G = 2664G = (500, 4650).

13

Cryptography and Number Theory Boot Camp NSF-REU 14

Elliptic curve ElGamal encryption

To implement the Elliptic Curve ElGamal Cryptosystem, the Alice and Bob first
agree on a shared private key K using the Elliptic Curve Diffie-Hellman key exchange,
as described in the previous subsection. Therefore, both Alice or Bob know the prime
p, the elliptic curve E(p), and the basepoint G on E(p), which are public data, but are
the only parties to know the point K on E(p). Moreover, Alice knows her private key
nA ∈ Z, and Bob knows his, nB ∈ Z.

To begin the encryption, the sender, Alice, should first encode her message into
a point M ∈ E(p). For example, she could break a numerical representation of the
message into blocks, which are each less than p. Given a block m, she can then find a
point on the curve E(p) with x-coordinate is m, and call this point M .

After translating her message into a point M on E(p), Alice chooses a positive
integer z. To encrypt a message to send to Bob, Alice then calculates the following
two points on E(p):

Y1 ≡ z(nAG) ≡ (znA)G mod p

Y2 ≡ M + zK mod p.

She then sends the pair of points (Y1, Y2) to Bob over the public channel.
Using the pair (Y1, Y2), Bob can now decrypt by calculating the following:

Y2 − nBY1 ≡ (M + zK)− nB(znAG) mod p

≡ M + zK − zK mod p

≡ M mod p.

This process is secure due to the difficulty of the elliptic curve discrete logarithm
problem.

Lenstra’s elliptic curve factoring algorithm

Lenstra’s Elliptic Curve Factoring Algorithm is another factoring method, that in
its functionality, is very similar to Pollard’s p− 1 algorithm. However, it is much more
powerful: It is considered the third best factoring algorithm currently known, and the
best for numbers with prime factors of a certain size.

The goal of Lenstra’s Algorithm is to find a non-trivial factor of a composite integer
n. The process is as follows:

• Pick an elliptic curve E, y2 = x3 + ax2 + bx+ c, and coefficients a, b, c ∈ Z.

• Check that the discriminant ∆ of E satisfies

∆ ̸≡ 0 mod n.

If ∆ ≡ 0 mod n, replace the curve E with a new elliptic curve until the required
condition is satisfied.

14

Cryptography and Number Theory Boot Camp NSF-REU 15

• Choose a random point P with integer coordinates on E.

• Successively double the point; i.e., start computing the sequence

P, 2P, 4P, 8P, . . . ,

and reduce their coefficients modulo n.

• Since our computations are performed modulo n, if y is the second coordinate of
a point in the sequence, to double this point, we must compute the slope that
appears in the formula for doubling, which requires finding the multiplicative
inverse of 2y modulo n. To do so, we use the Extended Euclidean Algorithm.

However, it is possible that after applying the Euclidean Algorithm to 2y and
n, we find that (2y, n) ̸= 1. This can happen since n is not prime, so that the
elliptic curve E modulo n is not necessarily a group. In this case, we have found
a factor of n, namely (2y, n).

• However, if (2y, n) = n, we failed to obtain a non-trivial factor of n. In this case,
we pick a new point P , or both a new elliptic curve E and point P on E, and
repeat the algorithm described thus far.

To see this process in action, consider the following example.

Example 6. Suppose that our goal is to factor n = 533. We fix the elliptic curve E
given by the equation y2 = x3 + 8, and we choose the point P = (1, 3) on E.

Next, we calculate the slope needed to find 2P modulo 533 using (3.2),

3xP
2(2yP)

−1 ≡ 3 · 1 · 6−1 ≡ 3 · 89 ≡ 267 mod 533.

From here, using (3.3), we find that x2P = 2 · 1 − 2672 ≡ 398 mod 533 and y2P =
267(1− 398)− 3 ≡ 65 mod 533, so that 2P = (398, 65).

Next, we attempt to find 4P modulo n. Using (3.2), the new slope should equal

3x2
2P (2y2P)

−1 ≡ 33982 · 130−1 mod 533.

However, after applying the Euclidean Algorithm, we find that 130 does not have an
inverse modulo 533, since (130, 533) = 13 ̸= 1. Therefore, we have found a nontrivial
factor of 533, namely 13. This gives us the factorization 533 = 13 · 41.

Note that an analogous algorithm can be performed by successive addition of the
point P ; i.e., successively computing the points

P, 2P, 3P, 4P, 5P,

modulo n.

15

Cryptography and Number Theory Boot Camp NSF-REU 16

A new elliptic curve public key cryptosystem

One of the goals of our REU was to create our own elliptic curve cryptosystem. In
this section, we describe this cryptosystem in detail. You will see that it uses many
of the mathematical concepts that we have studied in depth throughout the program,
such as the inverse of a unit modulo an integer, the order of an element of a finite
group, and elliptic curves modulo a prime.

Inspired by the idea of making an elliptic curve analogue of the RSA cryptosystem,
our cryptosystem relies on the choice of two secret large primes p and q, which are
distinct. By convention, we assume p < q. If N = pq, then we make use of an elliptic
curve modulo a prime x whose order is a multiple of N . It is possible to find such an
elliptic curve using an algorithm described in [1], although we do not describe it here.

Our cryptosystem relies on first selecting a secret basepoint G ∈ E(x) with order q.
We can do this by picking a random point that is not the identity, and then multiplying
it by q to see if this yields the identity. If it does, since q is prime and the order of any
element is a divisor of the order of the group E(x). If it does not, we must then try
another point until we find one with the desired order.

Before proceeding, we state and prove a useful lemma.

Lemma 7. Fix a prime x and an integer n. Suppose that E is an elliptic curve for
which E(x) is non-singular. If G is a point of order n on E(x), then

G, 2G, . . . , (n− 1)G,nG = ∞

are distinct points of E(x).

Proof. We proceed by way of contradiction. Suppose that there exist two points, jG
and kG, where 1 ≤ j < k ≤ n, such that jG = kG. Subtracting jG from both sides of
this equation, we obtain the equality

∞ = jG− jG = kG− jG = (k − j)G;

i.e., ∞ = (k − j)G. However, since j − k < j < n, this would imply that the order of
G is at most k − j ≤ n− 1, a contradiction. Thus jG and kG must be distinct points
on E(x).

Encryption and decryption

Recall that we have fixed secret large primes p and q, and a prime x for which
N = pq divides E(x). Once we have fixed the basepoint G ∈ E(x) of order q, we
choose a large positive integer b < q and use it to define a “decryption set” as follows:

S = {G, 2G, 3G, . . . , (b− 1)G, bG}. (4.1)

The b points in this set are distinct (and none are ∞) by taking n = q in Lemma 7.
Define the point K on E(x) as

K ≡ pG mod x,

16

Cryptography and Number Theory Boot Camp NSF-REU 17

and publish the triple (K,E(x), b) on the public channel. Note that since p < q and G
has order q on E(x), K ̸= ∞ on the curve.

To encrypt a message, the sender first completes the following two steps:

1. Break the message into blocks of size at most b.

2. To encrypt a block m, compute

Y ≡ mK mod x,

and send the point Y ∈ E(x) across the public channel.

Finally, to decrypt, the receiver must first find the multiplicative inverse ℓ of p
modulo x using the Euclidean Algorithm. Next, they multiply the encrypted message,
encoded into Y ∈ E(x), by ℓ, obtaining the point

ℓY ≡ ℓ(mK) ≡ (ℓm)(pG) ≡ (ℓp)(mG) ≡ mG mod x.

The receiver can then find mG among the elements of the decryption list (4.1), and
its index in the list will reveal the original plaintext m. Since we require m ≤ b, we
are ensured to find ℓY ≡ mG mod x somewhere on the list. Its position in the list is
precisely m, the original message.

Security of the cryptosystem

First, the public data, consisting of the triple (K,E(x), b) and the encrypted mes-
sage Y ∈ E(x), does not provide information on p or q except that they are larger than
b, and are factors of |E(x)|, which is a multiple of N . Hence we can choose a sufficiently
large key N to ensure security even if an attacker is able to calculate the order of E(x),
since it will be extremely difficult to find the factors p and q from this value. Second,
even if such a factorization is found, for an attacker to find the basepoint G, required
to generate the decryption list, they must solve the elliptic curve discrete logarithm
problem, of which there is no general efficient algorithm.

Python code implementations

The following are SAGE codes were built to implement concepts and algorithms
discussed in this paper, and were utilized in our REU program.

Greatest common divisor

def gcd (a , b) :
while b :

a , b = b , a%b
return a

17

Cryptography and Number Theory Boot Camp NSF-REU 18

Extended Euclidean Algorithm using Bézout’s equation

def xgcd (a , b) :
prevx , prevy , x , y = 1 ,0 ,0 ,1
while b :

q = a//b
x , prevx = prevx−q∗x , x
y , prevy = prevy−q∗y , y
a , b = b , a%b

return a , prevx , prevy

Pollard’s p− 1 factoring algorithm

def po l l a rd (mod, a) :
from f r a c t i o n s import gcd
d = gcd (a ,mod)
i = 2
while i <=100 and d==1:

a = a∗∗ i%mod
d = gcd (a−1,mod)
print "a_"+str (i) , "=" , str (a) , "␣and␣d_"+str (i) , "=␣"+str (d)
i+=1

i f d>1:
print "Po l l a rd ’ s ␣p−1␣ a lgor i thm␣ found␣a␣ f a c t o r : ␣"+str (d)

else :
print "Po l l a rd ’ s ␣p−1␣ a lgor i thm␣did ␣not␣ f i nd ␣a␣ f a c t o r . "

Elliptic curve addition group law

def el l ipt icAddMod (c o e f f i c i e n t s , point1 , point2 , modulus) :
Define names t ha t are e a s i e r to type .
a , b , c ,m = c o e f f i c i e n t s [0] , c o e f f i c i e n t s [1] , c o e f f i c i e n t s [2] , modulus
x1 , y1 , x2 , y2 = point1 [0]%m, point1 [1]%m, point2 [0]%m, point2 [1]%m
Check f o r a s i n gu l a r curve .
i f (a∗∗2∗b∗∗2−4∗a∗∗3∗c−4∗b∗∗3−27∗c∗∗2+18∗a∗b∗c)%m == 0 :

Check i f the po in t s are the s i n gu l a r po in t .
i f xgcd (2∗y1 ,m) [1] == 0 and (3∗ x1∗∗2 + a∗2∗x1 + b) == 0 :

return (" po int1 ␣ i s ␣ s ingu l a r , ␣ t ry ␣a␣ d i f f e r e n t ␣ po int ␣ or ␣ curve ")
e l i f xgcd (2∗y2 ,m) [1] == 0 and (3∗ x2∗∗2 + a∗2∗x2 + b) == 0 :

return (" po int2 ␣ i s ␣ s ingu l a r , ␣ t ry ␣a␣ d i f f e r e n t ␣ po int ␣ or ␣ curve ")
Escape the preced ing i f s ta tement .
else : pass
Check i f the po in t s are on the curve .
i f (y1∗∗2 % m) <> ((x1∗∗3 + a∗x1∗∗2 + b∗x1 + c) % m) :

return (" po int1 ␣not␣on␣ curve ")
e l i f (y2∗∗2 % m) <> ((x2∗∗3 + a∗x2∗∗2 + b∗x2 + c) % m) :

return (" po int2 ␣not␣on␣ curve ")
Implement the case f o r x1 != x2 .
e l i f x1 <> x2 :

i f gcd (x2−x1 ,m) == 1 :
A = (y2 − y1)∗ xgcd ((x2−x1) ,m) [1]
x3 = (A∗∗2 − a − x1 − x2) % m
y3 = (A∗(x1 − x3) − y1) % m
return ((x3 , y3))

18

Cryptography and Number Theory Boot Camp NSF-REU 19

else :
return ("The␣ ’ s l ope ’ ␣ i s ␣not␣ we l l ␣ de f ined ␣ f o r ␣ these ␣ po in t s . ")

Implement the case f o r po in t1 = poin t2 .
e l i f y1 == y2 and y1 <> 0 :

i f gcd (2∗y1 ,m) == 1 :
A = (3∗ x1∗∗2 + a∗2∗x1 + b)∗ xgcd (2∗y1 , m) [1]
x3 = (A∗∗2 − a − x1 − x2) % m
y3 = (A∗(x1 − x3) − y1) % m
return ((x3 , y3))

else :
return ("The␣ ’ d e r i v a t i v e ’ ␣ i s ␣ undef ined ␣ at ␣ t h i s ␣ po int ")

The l a s t p o s s i b i l i t y shou ld be where po in t1 = −po in t2 .
else :

return (" po int1 ␣+␣point2 ␣=␣ the ␣ po int ␣ at ␣ i n f i n i t y ")

Adding point on elliptic curve to itself multiple times

def s c a lMu l t i p l y (sM, c o e f f i c i e n t s , x , y , p) :
sM i s the number o f t imes added
base = (x , y)
r e s u l t i s the i d e n t i t y to beg in with ,
make sure the add func t i on hand les the i d e n t i t y
a conc i se way to add po in t to i t s e l f n t imes
i f (sM % 2 == 1) :

r e s u l t = base
sM = sM >> 1
base = el l ipt icAddMod (c o e f f i c i e n t s , base , base , p)
while (sM > 0) :

i f (sM % 2 == 1) :
r e s u l t = el l ipt icAddMod (c o e f f i c i e n t s , r e su l t , base , p)

sM = sM >> 1
base = el l ipt icAddMod (c o e f f i c i e n t s , base , base , p)

return r e s u l t

Lenstra’s elliptic curve factoring method

def e l l i p t i c F a c t o r (point , c o e f f s , modulus , maxsteps , s t y l e) :
prev = point
r = el l ipt icAddMod ((0 , c o e f f s [0] , c o e f f s [1]) , point , point , modulus)
s = 1
i f s t y l e == "a" :

while type (r) <> type (str ()) and s < maxsteps :
prev = r
r = el l ipt icAddMod ((0 , c o e f f s [0] , c o e f f s [1]) , point , r , modulus)
step i t e r a t o r
s += 1

i f gcd (prev [0] − point [0] , modulus) not in [modulus , 1] :
return (gcd (prev [0]− point [0] , modulus))

else :
return ("No␣ f a c t o r ␣ found . ")

e l i f s t y l e == "d" :
while type (r) <> type (str ()) and s < maxsteps :

prev = r

19

Cryptography and Number Theory Boot Camp NSF-REU 20

r = el l ipt icAddMod ((0 , c o e f f s [0] , c o e f f s [1]) , r , r , modulus)
step i t e r a t o r
s += 1
#checks i f s t r i n g

i f gcd (2∗ prev [1] , modulus) not in [modulus , 1] :
return (gcd (2∗ prev [1] , modulus))

else :
return ("No␣ f a c t o r ␣ found . ")

else :
return ("Must␣ input ␣\"d\"␣ (doubl ing) ␣ or ␣\"a\"␣ (adding) . ")

Generate points on a given elliptic curve

def e l l i p t i cT e s tP o i n t s (th reeCoe f f s , modulus , xMax , yMax) :
xd i c t = {}
yd i c t = {}
p o i n t l i s t = []
The d i c t i ona r y would account f o r any s o r t o f d u p l i c a t e .
for i in xrange (1 ,xMax+1):

xd i c t [(i ∗∗3 + th r e eCoe f f s [0] ∗ i ∗∗2 + th r e eCoe f f s [1] ∗ i
+ th r e eCoe f f s [2])%modulus] = i

for j in xrange (1 ,yMax+1):
i f (j ∗∗2)%modulus in xd i c t . keys () :

p o i n t l i s t . append ((int (xd i c t [(j ∗∗2)%modulus]) , j))
return p o i n t l i s t

Acknowledgements

The REU in which this manuscript was developed was funded by National Science
Foundation Grant DMS #1501404/1623035 through the University of Kansas. The
REU was hosted at the University of Texas at El Paso (UTEP) under the direction
of Prof. Emily Witt and Prof. Daniel Hernández, assisted by Angel Agüero. We thank
UTEP for their generous hospitality during the duration of the REU. We also thank
Gordan Savin for allowing us to use his notes as a reference.

Finally, a special thanks to Jack Jeffries, a very cool guy that couldn’t make it.

References

[1] D. Boneh, K. Rubin, and A. Silverberg. Finding composite order ordinary elliptic
curves using the Cocks-Pinch method. Journal of Number Theory, 131(5):832 –
841, 2011. Elliptic Curve Cryptography.

[2] Gordan Savin. Numbers, groups and cryptography.
[3] Wade Trappe and Lawrence C Washington. Introduction to cryptography with cod-

ing theory. Pearson Education India, 2006.

20

	Introduction
	Modular arithmetic
	Public key cryptography
	The RSA cryptosystem
	Discrete logarithm problem
	Diffie-Hellman key exchange
	ElGamal encryption

	Factoring
	Naive factoring method
	Pollard's p-1 factoring algorithm

	Elliptic curves
	Addition law on an elliptic curve
	Elliptic curves modulo a prime
	Elliptic curve Diffie-Hellman key exchange
	Elliptic curve ElGamal encryption
	Lenstra's elliptic curve factoring algorithm

	A new elliptic curve public key cryptosystem
	Encryption and decryption
	Security of the cryptosystem

	Python code implementations

