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Abstract

We describe our formal proof of Nakayama’s Lemma, a funda-
mental theorem in the mathematical field of commutative algebra.
The statement and proof of this result involve several commutative-
algebraic structures including commutative rings, ideals of these
rings, and modules over them, and we also explain our pro-
cess of formalizing these structures. Source code for this work is
available on the following site: https://github.com/ku-sldg/algebra.
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1 Introduction

The mathematical field of commutative algebra stems from the study of solu-

tions to polynomial equations. Research in the field now centers around

commutative rings—rings in which order does not affect multiplication, i.e.,

x · y = y · x for any ring elements x and y—and fundamental algebraic objects
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associated to them: ideals of these rings, and modules over them. Commuta-

tive algebra has deep connections with other areas of theoretical mathematics,

including number theory and algebraic geometry.

Commutative algebra also has broad applications to science and technology.

For instance, it has been integral to advances in robotics [1], and has helped

form our current understanding of the human genome [2]. The commutative-

algebraic notion of a Gröbner basis, a special type of generating set for an

ideal in a ring of polynomials, has become a fundamental computational tool

in coding theory and cryptography (e.g., see [3]). A implementation of Buch-

berger’s algorithm [4] for determining Gröbner bases of ideals in polynomial

rings has been proved correct within the proof assistant Coq [5, 6], and an

integrated formal development of the algorithm in Coq has also been carried

out [7] (see also [8]).

Our goal is to newly formalize theoretical, rather than computational, com-

mutative algebra in Coq. We formally prove Nakayama’s Lemma [9, 10], an

essential result in the field. In doing so, we formalize algebraic structures that

are fundamental to higher-level algebra, such as local rings and modules over

commutative rings, and quotient rings and modules. Rather than build upon

some of the basic objects from abstract algebra, such as groups and rings, that

have been formalized in Coq, e.g., in the Mathematical Components Library

[11], we start from scratch. The theory, including the formalization of all

algebraic structures, makes up approximately 100 kB, and 3300 lines of code.

The notion of a module over a ring is an extension of the linear-algebraic

notion of a vector space over a field, ubiquitous in mathematics and its appli-

cations. Less frequently referred to as the Krull-Azumaya theorem 1 [13],

Nakayama’s Lemma describes one way that a finitely generated module over

1Hideyuki Matsumura explains in his text Commutative Algebra [12]: “This simple but impor-
tant lemma is due to T. Nakayama, G. Azumaya, and W. Krull. Priority is obscure, and although
it is usually called the Lemma of Nakayama, late Prof. Nakayama did not like the name.”
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an arbitrary commutative ring acts like a vector space over a field. True to

the convention that “lemma” often refers to a result serving as a stepping

stone toward another goal, Nakayama’s Lemma is applied widely throughout

the field, and the result is typically introduced in a first graduate course in

commutative algebra [12, 14, 15].

2 Mathematical Basis and Motivation

2.1 The Fundamental Algebraic Structures

Here, we give a brief description of the major mathematical structures from

commutative algebra that are relevant to Nakayama’s Lemma.

Commutative rings

In abstract algebra, the quintessential example of a commutative ring is the

set of integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

using the natural definitions of addition and multiplication.

Adding two integers produces another, and the associative and commuta-

tive laws hold for addition. The integers form an abelian group under addition

since 0 ∈ Z is the additive identity in the sense that adding zero has no effect

on any integer, and given any integer n, the integer −n is its additive inverse

in the sense that the sum of n and −n is the additive identity 0.

The set of integers also forms a ring due to its properties of multiplication.

It is closed under this binary operation, which satisfies associativity, and the

distributive law governing the compatibility of addition and multiplication

holds. We require rings to contain a multiplicative identity, and 1 ∈ Z is such

an element since n ∈ Z one has n · 1 = 1 · n = n. Even more, the integers form

a commutative ring since n ·m = m · n for all integers n and m.
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In general, a commutative ring is a set R with two binary operations, which

we call addition and multiplication, typically denoted · and +, respectively. As

motivated by the properties of the ring of integers, addition, R must be an

abelian group, multiplication must be associative, Rmust have a multiplicative

identity, and the distributive law must hold, i.e., for all r, s, t ∈ R, (r+ s) · t =

r · t+ s · t and r · (s+ t) = r · s+ r · t.

Other familiar examples of commutative rings include the integers modulo a

fixed integer n > 0, fields—commutative rings in which every nonzero element

has a multiplicative inverse—such as the rings of rational numbers Q, real

numbers R, and complex numbers C, and the rings of polynomials in a variable

x with integer coefficients, or with coefficients in a field.

A subgroup of a group G is a subset H of G that is itself a group when

the binary operation of G is restricted to H. Similarly, a subring of a ring R

is a subset S of R that forms a group when the operations on R are restricted

to S, using the same multiplicative identity. One has the sequence of subrings

Z ⊆ Q ⊆ R ⊆ C.

Ideals of commutative rings

The concept of an ideal of a ring can be thought of as an extension of the

notion of an integer n in the ring of integers Z. An ideal of commutative ring

R is a subset I of R that is itself an abelian group under addition, which also

satisfies the following “absorption” property: Given any element a of I, the

product x · a is again in I for any ring element x ∈ R.

One can verify that given any integer n, the set nZ of its multiples forms

an ideal of Z. For instance, 2Z consists of all even numbers, and is an abelian

group under addition: the sum of two even numbers is even, the additive

identity 0 is even, and the negative of an even number is even. Moreover,

the absorption property holds since the product of any integer and an even
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number is again even. In fact, every ideal of the ring of integers has this form

nZ for some integer n, though ideals in general commutative rings can have

more complicated properties.

Since every integer n can be written as 1 · n, the ideal 1Z is the entire ring

Z. One can see that given a commutative ring R itself satisfies the axioms

required to be an ideal of R. We call an ideal I of R proper if it is strictly

contained in R. The zero ideal consisting solely of its additive identity is a

proper ideal of any commutative ring.

A prime ideal of a commutative ring is a proper ideal I with the following

property: If the product x · y of ring elements x and y is in I, then x ∈ I or

y ∈ I. The naming convention is motivated by the ring of integers, where the

prime ideals are precisely those of the form pZ, where p is a prime number,

along with the zero ideal.

A maximal ideal of a commutative ring is a proper ideal that is maximal

with respect to inclusion, i.e., no other proper ideal strictly contains it. Return-

ing to our example of the ring of integers, 6Z ⊊ 2Z since every multiple of 6 is

even, so 6Z is not a maximal ideal of Z. However, no proper ideal I contains

2Z: If 2Z ⊊ I ⊊ Z, then I would necessarily contain an odd number n. Writ-

ing n = 2k + 1 for some integer k, we notice that since −2k is in 2Z, it is also

an element of the larger set I, and since I is an abelian group under addition,

(2k+1)+ (−2k) = 1 is also in the ideal I. However, in this case, every integer

n = n · 1 is in I by absorption, so I = Z is not a proper ideal, a contradiction.

In fact, 3Z is the only other maximal ideal of Z containing 6Z, and in

general, the prime ideals in the ring of integers besides the zero ideal are pZ,

where p a prime number. It is not a coincidence that every maximal ideal of the

ring of integers is also a prime ideal; the analogous statement can be proved

in arbitrary commutative rings.
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Local rings

A commutative ring is local if it has exactly one maximal ideal. Every field

is local since the only proper ideal of a field is the zero ideal, though by our

observations above, the ring of integers is not local. However, the set of all

rational numbers that can be written with an odd denominator does form a

subring of all rational numbers, and its unique maximal ideal consists of the

elements with even numerator; in fact, this ring is the so-called localization of

Z at the maximal ideal 2Z. The ring of integers modulo n > 1 is local if and

only if n is a power of a prime number p, in which case the unique maximal

ideal consists of all multiples of p.

The ring of polynomials over a field F in a variable x is not local; in fact,

given any irreducible polynomial f(x), the set of its multiples is a maximal

ideal of the polynomial ring F [x]. On the other hand, the set of all formal

power series in x over F is a local ring; its maximal ideal consists of the power

series with no constant term.

Modules over commutative rings

Let R be a commutative ring. A module over R, or R-module, is an abelian

group M under a binary operation +, and a scalar multiplication R×M → M

denoted ·, satisfying the following properties for all r, s ∈ R and u, v ∈ M .

1. r · (u+ v) = r · u+ r · v

2. (r + s) · u = r · u+ s · u

3. (rs) · u = r · (s · u)

4. 1 · u = u

From this definition, one can see that a module over a field F is precisely

an F -vector space, so the notion of a module over an arbitrary commutative

ring extends that of a vector space over a field. An R-submodule N of a module
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M is simply a subgroup of M that inherits the scalar multiplication of N , i.e.,

r · w is an element of N whenever w ∈ N . Therefore, returning to the case

that F is a field, the F -submodules of a vector space over F are precisely its

vector subspaces.

Finitely generated vector spaces form the foundation for matrix alge-

bra, and the extension of this notion to module theory is needed to state

Nakayama’s Lemma. We call an R-module M finitely generated if there exist

a fixed finite list of elements u1, . . . , un of M such that every element of M is

a scalar combination of the ui. In other words, given any w ∈ M , there exist

r1, . . . , rn ∈ R for which

w = r1u1 + r1u2 + · · ·+ rnun.

The set {u1, . . . , un} is called a generating set for the M as an R-module.

It is straightforward to see that a finitely generated module over a field is

simply a finite dimensional vector space. Moreover, if V is a finite dimensional

vector space over a field F , one can choose the generators u1, . . . , un to be a

basis for V , so that n = dimV . In this case, the choice of scalar coefficients

in the expression above for w ∈ V is unique. When R is not a field, however,

such an expression is typically not unique.

2.2 Nakayama’s Lemma, Informal Statement

In order to informally state Nakayama’s Lemma, we first explain some of

notational conventions. In this discussion, suppose that I is an ideal of a com-

mutative ring R, and that M is an R-module. Then IM denotes the set of all

scalar combinations of elements in M with coefficients in I. That is, IM is the
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set of elements of the form, for some positive integer k,

a1u1 + a2u2 + · · ·+ akuk

where a1, . . . , ak ∈ I and u1, . . . , uk ∈ M . Observe the absorption property of

ideals implies that IM is an R-submodule of M .

If an R-module M consists of just one element, this element must be its

additive identity 0, by virtue of the fact that M is an abelian group under

addition. The notation M = 0 is used to indicate that we are in this situation.

Nakayama’s Lemma. Let R be a commutative local ring, and let m denote

its unique maximal ideal. If M is a finitely generated R-module and M = mM ,

then M = 0.

When R = F is a field, its unique maximal ideal is the zero ideal. Given

any vector space M = V over F , the only linear combination of vectors with

coefficients in the zero ideal is the zero vector. Hence in this case, regardless

of the choice of vector space, the hypothesis that M = mM is equivalent to

the conclusion that M = 0. In particular, the hypothesis that V is finitely

generated, which is equivalent to the assumption that it is a finite-dimensional

F -vector space, is not required in this setting. Therefore, Nakayama’s Lemma

describes one way that finitely generated modules over commutative local rings

are similar to vector spaces.

The quotient R/m of a commutative ring R modulo any maximal ideal m

is a field; in fact, this property characterizes maximal ideals. Moreover, given

an arbitrary R-module M , its quotient modulo the submodule mM is an R/m-

module, i.e., M/mM is a vector space over R/m. Nakayama’s Lemma implies
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Fig. 3.0.1 The hierarchy of our algebraic structures in Coq
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that if M is finitely generated, then bases for M/mM corresponds, via lifting,

to minimal sets of generators of M .

We point out that there are alternate statements of Nakayama’s Lemma

that do not require the hypothesis that R must be local. One can replace

the unique maximal ideal with the Jacobson radical of the ring, which is the

intersection of all maximal ideals. Alternatively, I is an arbitrary proper ideal

of a commutative ring R and M is a finitely generated R-module for which

M = IM , then this ensures the existence of a ring element r congruent to 1

modulo I such that rM = 0, i.e., ru = 0 for every u ∈ M .

3 Our Algebraic Hierarchy

In this section we describe our process of formalizing the necessary algebraic

structures, detailed in the previous section, in Coq. Then, with these formal

definitions in hand, we move on in the next section to detail our formal proof

of Nakayama’s Lemma.

3.1 Semigroups

Appearing at the top of Figure 3.0.1, our foundation begins by defining a

semigroup class, which declares a binary operation to be associative. From
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here, we build up through monoids, which introduce identities, to groups,

which introduce inverses. Note the double equals, “==”, appearing in these

definitions is notation for an arbitrary equivalence relation over the group’s

carrier set, which acts as equality.

Infix "==" := equiv (at level 60, no associativity).

Class Semigroup := {

semigroup_assoc:

forall (a b c: Carrier),

a <o> b <o> c == a <o> (b <o> c);

}.

Class Monoid := {

monoid_semigroup :> Semigroup equiv op;

monoid_ident_l:

forall (a: Carrier), ident <o> a == a;

monoid_ident_r:

forall (a: Carrier), a <o> ident == a;

}.

Class Group := {

group_monoid :> Monoid equiv op ident;

group_inv_l:

forall (a: Carrier), inv a <o> a == ident;

group_inv_r:

forall (a: Carrier), a <o> inv a == ident;

}.

The line “monoid_semigroup :> Semigroup equiv op;” simply coerces the

monoid typeclass into a semigroup, and similar lines perform analogous

functions.
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3.2 Algebraic Quotients

While in the end, our formal proof does not call upon quotients of alge-

braic structures, alternative proofs of Nakamaya’s Lemma take advantage of

the structures quotient rings and quotient modules. As algebraic quotient

structures are also fundamental to commutative algebra, it is worth pointing

out that we have formalized quotients of groups, rings, and modules using

typeclasses, which appear to work rather smoothly.

An algebraic quotient is, roughly, the set of equivalence classes of an alge-

braic structure with respect to an equivalence relation on its elements, for

which the set of equivalence classes inherit the same kind of algebraic struc-

ture. As an example, consider the quotient of a group modulo a subgroup,

i.e., a subset of elements of the group that it itself a group using the same

operations. Under this equivalence relation on the group, every element of the

subgroup must be in the same equivalence class as the identity. For instance,

after taking the quotient of the ring of integers Z by the subgroup nZ consist-

ing of all multiples of an integer n, one obtains the group of integers modulo n,

often denoted Z/nZ. In general, with P the predicate for the subgroup, there

are two ways to make an equivalence relation from this description.

Definition left_congru (a b: Carrier) :=

P (inv a <o> b).

Definition right_congru (a b: Carrier) :=

P (a <o> inv b).

When these two equivalence relations coincide, then we can prove that this

common relation actually preserves the group structure. Subgroups of a group

that satisfy this property are called normal subgroups.

Let normal_subgroup_congru_coincide :=

forall (a b: Carrier),
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left_congru op inv P a b <->

right_congru op inv P a b.

Theorem quotient_normal_subgroup_group:

normal_subgroup_congru_coincide ->

Group (left_congru op inv P) op ident inv.

The utility–and, as a consequence, the ubiquity–of quotients in algebra

motivates our choice to use equivalence relations to define the components of a

group structure. If one were to instead use the traditional Leibniz equality, it

would be difficult to identify a quotient group with another group. However, by

defining a group in terms of an arbitrary equivalence relation, in our theory a

quotient group is simply defined as a group, but under an equivalence relation

that is not the usual equality. Not much is lost in adopting this convention,

thanks to Coq’s rewrite tactics for setoids, which are types equipped with an

equivalence relation.

3.3 Rings and their Ideals

Moving onward, rings form the next step in our algebraic hierarchy; a ring

has two binary operations: addition, which must be commutative, and mul-

tiplication, which need not be commutative in general. In our formulation,

rings must have a multiplicative identity. Next, we formalize the definition of

a commutative ring, further requiring commutativity of multiplication.

At this point, we formalize several algebraic structures defined in terms of

commutative rings. First is the definition of an ideal of a commutative ring,

a subgroup of the ring under addition that satisfies the absorption property

under multiplication, and with this, also the notion of a quotient ring R/I,

where I is an ideal of a commutative ring R. We also formalize the definition
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of a prime ideal, and that of a maximal ideal–a proper ideal that is maximal

with respect to inclusion. Below is the definition of latter in Coq, which uses

P as the predicate for the ideal.

Definition maximal_ideal :=

exists (r: Carrier), (not (P r) /\

forall (Q: Carrier -> Prop)

(Q_proper: Proper (equiv ==> iff) Q)

(Q_ideal: Ideal add zero minus mul Q),

(forall (r: Carrier), P r -> Q r) ->

(forall (r: Carrier), Q r) \/

(forall (r: Carrier), Q r -> P r)).

Next, we employ the above definition to formally define a local ring, i.e., a

commutative ring with a single maximal ideal.

Definition local_ring :=

exists (P: Carrier -> Prop)

(P_proper: Proper (equiv ==> iff) P)

(P_ideal: Ideal add zero minus mul P),

maximal_ideal P /\

(forall (Q: Carrier -> Prop)

(Q_proper: Proper (equiv ==> iff) Q)

(Q_ideal: Ideal add zero minus mul Q),

maximal_ideal Q -> forall (r: Carrier), P r <-> Q r).

3.4 Modules over Rings

With the fundamental definitions for commutative rings and their ide-

als formalized, we move on to build our formal module theory. We start

by formalizing the definition of a module over a commutative ring, the
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commutative-algebraic generalization of the notion of a vector space over a

field. Nakayama’s Lemma is a statement about finitely generated modules, and

hence we formalized the notion of a scalar combination of a finite collection of

elements, u1, . . . , un a module M over a commutative ring R, i.e., expressions

of the form r1u1 + r1u2 + · · ·+ rnun, where each ri is an element of R.

In our formalization of scalar combinations, we use “list” to mean length-

parameterized lists; since we don’t use the simpler kind of lists, there are no

name collisions. In the code excerpted below, M is the type of module elements,

R is the type of ring elements, acting as coefficients, and t A n is a list whose

elements are of type A and whose length is n.

Definition finitely_generated {n: nat}(genSet: t M n) :=

forall (elt: M),

exists (coeffs: t R n),

elt =M= linear_combin coeffs genSet.

Finally, we define the submodule IM of a module M over a commutative

ring R, where I is an arbitrary ideal ofR. Recall that whenR is local and I is its

unique maximal ideal, this submodule appears in the statement of Nakayama’s

Lemma. In general, IM is the set consisting of all scalar combinations of

elements of M whose coefficients are in I. We represent this in Coq as a

predicate over M .

Context (P: R -> Prop).

Context {P_proper: Proper (Requiv ==> iff) P}.

Context {P_ideal: Ideal Radd Rzero Rminus Rmul P}.

Definition ideal_module (x: M): Prop :=

exists (n: nat)(coeffs: t R n)(elts: t M n),
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Forall P coeffs /\

x =M= linear_combin Madd Mzero action coeffs elts.

The use of “Forall P coeffs” ensures that every element of the coefficient

list coeffs satisfies the predicate P.

4 Constructing the Formal Proof

Not only to aid in the formal proof of Nakayama’s lemma, but also to add to

the body of formalized theory in commutative algebra, along with our formal

definitions of algebraic structures, we also establish some basic theory of these

objects in Coq. For instance, consider the notion of a unit of a commutative

ring R, which is an element a ∈ R with a multiplicative inverse, i.e., there

exists an element a−1 ∈ R for which x−1 ·x is the multiplicative identity 1 ∈ R.

In fact, it x is a unit, its inverse is unique.

Suppose that I is an ideal of a commutative ring R. Then if I is the trivial

ideal, i.e., I = R, then it, of course, contains a unit, namely 1. We formally

establish the converse of this statement: If I contains a unit a, then I = R.

The informal proof logic is as follows: Due to the absorption property of I,

a−1 ·a = 1 ∈ I. Hence for every element r of R, r = r ·1 is also in I, i.e., I = R.

On the other hand, if I = R, then the multiplicative identity 1 is a unit in I.

We also use classical logic to prove that 1− x is a unit whenever x is an

element of a local ring that is not a unit. The proof is completed by way of

contradiction, and uses the rule that ¬¬P → P .

4.1 Dealing with the Axiom of Choice

Every non-unit element of a commutative ring is contained in some maximal

ideal, a fact that relies on the Axiom of Choice. This fact can be derived from

from the weaker statement that every commutative ring contains a maximal
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ideal: Indeed, assume this, and fix a non-unit x of a commutative ring R. Then

the quotient R/⟨x⟩ of R modulo the principal ideal generated by x is a commu-

tative ring, and so contains a maximal ideal, which corresponds precisely to a

maximal ideal of R containing x by the lattice isomorphism theorem for rings.

The following standard informal proof of the fact that every commutative

rings contains a maximal ideal calls upon Zorn’s lemma, which is equivalent

to the Axiom of Choice (assuming Zermelo-Fraenkel Set Theory), and which

says that if every chain of elements from a partially ordered set has an upper

bound in the set, then the set must contain at least one maximal element.

Fix a commutative ring R. Since 1 ̸= 0 in R, the zero ideal is proper. If the zero

ideal is maximal, then we have identified a maximal ideal of R. If not, then there

must exist a proper ideal I1 of R containing more than just the element 0.

If I1 is maximal, then we have found a maximal ideal, but if not, then there

exists a proper ideal I2 of R that strictly contains I1. Likewise, if I2 is maximal, we

are done, and if not, there exists a proper ideal I3 such that I3 ⊋ I2. Continuing

this pattern, we either identify a maximal ideal of R, or we construct an infinite

chain of proper ideals of R:

I1 ⊊ I2 ⊊ I3 ⊊ · · · ⊊ In ⊊ · · · . (4.1)

More precisely, assume by induction that there exist proper, non-maximal ideals

Ik of R, 1 < k ≤ n, such that each Ik−1 is strictly contained in Ik. Since In is not

maximal, there exists a proper ideal In+1 of R such that In ⊊ In+1. Then either

In+1 is maximal, or we have extended the chain by one additional link.

It is straightforward to verify, by definition, that an increasing union of ideals

is again an ideal. Hence if, in this process, no maximal ideal is identified, i.e., we

have ensured the existence of a chain of the form (4.1), then the increasing union

of the Ik is again an ideal.
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Let X denote the set of all proper ideals of R, partially ordered by inclusion.

We have shown that every chain in X has an upper bound in X, so Zorn’s lemma

ensures the existence of a maximal element of X, i.e., a maximal ideal of R.

This argument potentially requires infinitely many steps, posing an imple-

mentation problem. Indeed, suppose one were to write a Coq proof tactic called

generate_larger_ideal that allows one to move from a non-maximal, proper

ideal I that contains a fixed non-unit x to a strictly larger ideal J , which is

again proper, and also contains x.

After fixing a proper ideal I1, provided that it is not maximal, our first invo-

cation of generate_larger_ideal will produce another ideal, I2. It is possible

that I2 is also non-maximal, requiring that we invoke generate_larger_ideal

again, producing I3, which again could be non-maximal, and so on, which

could lead to an infinite number of calls to the tactic generate_larger_ideal

Of course, this would occupy any machine’s processor(s) forever, and further,

the boundlessly increasing number of ideals in the proof state would fill any

machine’s memory.

Even if it were possible not to overwhelm a system with these infinitely

many calls to a single proof tactic, one would still have to invoke more tactics to

finish the proof with an application of Zorn’s lemma, which finally guarantees

us a maximal ideal containing x. To summarize, we are forced to run the fol-

lowing proof script which will never get past calling generate_larger_ideal

infinitely many times.

(* must be called infinitely often *)

repeat generate_larger_ideal.

(* called after the above non-terminating call finishes *)

zorns_lemma.
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We choose to avoid this infinite proof script issue by including an axiom

that any non-unit x of a ring must be contained in some maximal ideal.

Axiom comm_ring_nonunit_maximal_ideal:

forall (x: Carrier),

~ is_unit equiv mul one x ->

exists (P: Carrier -> Prop)

(P_proper: Proper (equiv ==> iff) P)

(P_ideal: Ideal add zero minus mul P),

P x /\ maximal_ideal P.

4.2 The Formal Statement

We now present our formal statement of Nakayama’s Lemma in Coq, and

describe a lemma called upon in our proof.

Nakayama’s Lemma. Let R be a commutative local ring, and let m denote its

maximal ideal. Suppose that M is a finitely generated R-module. If M = mM ,

then M = 0, i.e., M must be the R-module containing only one element, its

identity as an additive abelian group.

Context {P_ideal: Ideal Radd Rzero Rminus Rmul P}.

Context {P_maxideal: maximal_ideal Requiv Radd ... Rmul P}.

Context {R_local: local_ring Requiv Radd Rzero Rminus Rmul}.

Let ideal_module_pred := ideal_module Mequiv Madd Mzero action P.

Theorem nakayama:

forall {n: nat}(basis: t M n),

finitely_generated Mequiv Madd Mzero action basis ->
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(forall a: M, ideal_module_pred a) ->

forall a: M, a =M= Mzero.

To use as a building block in the formal proof of Nakayama’s Lemma,

we formally state and prove a lemma that gives a concrete description of

the elements of the submodule mM appearing in its statement. This lemma

applies more generally, to an arbitrary finitely generated module M over a

(not necessarily local) commutative ring, and any submodule of the form IM ,

for I an arbitrary ideal.

By definition, IM consists of scalar combinations of elements of M with

coefficients in I. The lemma states that the elements from M appearing in

such an expression can be chosen to be from any fixed finite generating set

for M . In other words, given any generating set u1, . . . , un ∈ M for a finitely

generated R-module M , every element x of IM can be written as a scalar

combination a1 · u1 + a2 · u2 + · · ·+ an · un, where each ai ∈ I.

Lemma module_fin_gen_ideal_module:

forall {n: nat}(genSet: t M n),

finitely_generated Mequiv Madd Mzero action genSet ->

forall {m: nat}(coeffs: t R m)(elts: t M m),

Forall P coeffs ->

exists (coeffs': t R n),

linear_combin Madd Mzero action coeffs elts =M=

linear_combin Madd Mzero action coeffs' genSet /\

Forall P coeffs'.

This lemma’s proof follows from a straightforward argument based on def-

initions, by induction on the number of elements in a fixed generating set for

M , which we informally describe: By definition, x ∈ IM can be written, for

some positive integer k and elements ri ∈ R and wi ∈ M , 1 ≤ i ≤ k, as
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x = r1 ·w1 + r2 ·w2 + · · ·+ rk ·wk. What’s more, by definition of a finite gen-

erating set u1, . . . , un for M , each wi equals ci1 · u1 + ci2 · u2 + · · · + cin · un

for appropriate choices of cij ∈ R. Hence, inductively applying associativity,

x =

k∑
i=1

ri · wi =

k∑
i=1

ri ·

(
n∑

j=1

cij · uj

)

=

n∑
j=1

k∑
i=1

ri · (cij · uj) =

n∑
j=1

(
k∑

i=1

cij · ri

)
· uj .

By the absorption property of ideals, each cij · ri is in I, and since ideals

are closed under addition, we inductively conclude that the coefficient aj :=

c1j · r1 + c2j · r2 + · · · ckj · rk of uj is also in I.

4.3 The Formal Proof

We now outline our formal proof of Nakayama’s lemma, and proceed by way

of induction on the number of elements in a fixed generating set for the finitely

generated R-module M . The base case in this situation is when M requires

no generators, so M consists solely of the empty scalar combination, i.e., the

empty sum, which, by convention, is the zero element. In other words, M = 0

by assumption, and this is also precisely the conclusion of Nakayama’s Lemma.

Hence the statement holds trivially, without using the hypothesis that M =

mM .

We turn to the inductive step. Fixing an arbitrary nonnegative integer n,

we assume that Nakayama’s Lemma holds in the case that M has a generating

set consisting of n elements.

Now, fix an R-module M generated by u1, . . . , un+1 ∈ M . By assumption,

M = mM , and in particular, the generator u1 is an element of the submodule

mM . The lemma described in Section 4.2 guarantees the existence of ring
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elements a1, . . . , an ∈ m for which

u1 = a1 · u1 + a2 · u2 + · · ·+ an+1 · un+1.

Collecting the u1 terms on the left-hand side of the equation, calling on the

existence of additive inverses in R, and distributivity of scalar multiplication

for modules, we see that

(1− a1) · u1 = a2 · u2 + · · ·+ an+1 · un+1. (4.2)

In Coq, we work backward to establish (4.2). The comment following each

tactic appearing in the code below offers a brief indication of its effects on the

goal.

(* (1 - a1) u1 = ... *)

assert ((Rone [+] Rminus a1) <.> u1 =M=

linear_combin Madd Mzero action coeffs' generatingSet').

160 { (* 1 u1 + (-a1) u1 = ... *)

setoid_rewrite (module_distrib_Radd Radd Rmul Rone

Mequiv Madd Mzero Mminus action).

(* u1 + (-a1) u1 = ... *)

setoid_rewrite (module_Rone Radd Rmul Rone

165 Mequiv Madd Mzero Mminus action).

(* u1 - a1 u1 = ... *)

setoid_rewrite (module_minus_l Requiv Radd ... Rone

Mequiv Madd Mzero Mminus action).

symmetry. (* ... = u1 - a1 u1 *)

170 (* ... + a1 u1 = u1 *)
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apply (group_move_r Mequiv Madd Mzero Mminus).

(* u1 = ... + a1 u1 *)

symmetry.

assumption. }

Since a proper ideal contains no units and a1 is taken to be in m, it is not a

unit. Hence, by the formalized statement mentioned early in Section 4, 1−a1 is

a unit of R. Let b1 ∈ R denote its multiplicative inverse, so that b1 ·(1−a1) = 1.

Multiplying this element on the either side of (4.2), we deduce the following.

b1 · ((1− a1) · u1) = b1 · (a2 · u2 + · · ·+ an+1 · un+1) (4.3)

(b1 · (1− a1)) · u1 = b1 · (a2 · u2) + · · ·+ b1 · (an+1 · un+1) (4.4)

u1 = 1 · u1 = (b1 · a2) · u2 + · · ·+ (b1 · an+1) · un+1 (4.5)

pose proof

(local_comm_ring_sub_1_nonunit Requiv Radd ... Rone

R_local x1 Hx1_nonunit) as H1ma1_unit.

(* Getting to u1 = (b1 coeffs') . genSet *)

185 (* 1 - a1 is a unit *)

inversion_clear H1ma1_unit as [b1 Hb1].

(* b1 (1 - a1) = 1 *)

setoid_rewrite (commutative Requiv Rmul) in Hb1.

This block of code has the effect of naming b1 as the inverse of the unit

1− a1, and storing in the hypothesis Hb1 the equation b1 · (1− a1) = 1. The

remainder of the code goes on to multiply on the left by b1 in the equation

H in order to establish (4.3). Going on and applying the axioms of a module

over a commutative ring, along with hypothesis Hb1, we can simplify the left

hand side of H to be just u1, as in (4.5).
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apply (module_op_l Requiv Mequiv action) with (r:=b1) in H.

190 (* H: (b1 (1 - a1)) u1 = ... *)

setoid_rewrite <- (module_distrib_Rmul Radd Rmul Rone

Mequiv Madd Mzero Mminus action) in H.

(* H: (1) u1 = ... *)

setoid_rewrite Hb1 in H.

195 (* H: u1 = ... *)

setoid_rewrite (module_Rone Radd Rmul Rone

Mequiv Madd Mzero Mminus action) in H.

In particular, the generator u1 can be written as a scalar combination of the

n generators u2, . . . , un+1, and is superfluous. Hence M can be generated by

n elements, and M = 0 by the inductive hypothesis. Though showing that

the inductive hypothesis holds is more technical in Coq than in this informal

proof, the extra steps are essentially bookkeeping.

5 Conclusion

Our work here is evidence that Coq is amendable to the formalization of

abstract algebraic notions from commutative algebra, which are often non-

discrete, and their theory. There are several natural directions in which to move

from here, a first step being to further develop the formal theory of quotient

rings, and to formalize the isomorphism theorems for rings.

Our current body of work can be extended to include further essential

concepts from commutative algebra, e.g., module homomorphisms; direct sums

and free modules; tensor products of modules and exact sequences; projective,

injective, and flat modules; direct and inverse limits of modules; and/or graded

rings and modules. In this process, building formal proofs of other fundamental

theorems involving these notions will likely be valuable in effectively designing
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their formal definitions, as we noticed in building our algebraic heirarchy for

Nakayama’s Lemma.

Finally, integrating within the formalized commutative algebra theory some

of the computational algebra that has been formally developed, such as that

regarding Gröbner bases [4, 7], could also be a fruitful direction to pursue.

Acknowledgments. This work is funded in part by the NSA Science

of Security initiative contract #H98230-18-D-0009 and Defense Advanced

Research Project Agency contract #HR0011-18-9-0001 and Honeywell FMT

Purchase Order #N000422909. The views and conclusions contained in this

document are those of the authors and should not be interpreted as repre-

senting the official policies, either expressed or implied, of the United States

Government.

Witt acknowledges support from NSF CAREER Award DMS-1945611,

the Keeler Intra-University Professorship from the University of Kansas, and

the Ruth I. Michler Memorial Prize from the Association for Women in

Mathematics.

References

[1] Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms,

4th edn. Undergraduate Texts in Mathematics, p. 646. Springer, Cham

(2015). https://doi.org/10.1007/978-3-319-16721-3. An introduction to

computational algebraic geometry and commutative algebra

[2] Reed, M.L.: Algebraic structure of genetic inheritance. Bull. Amer.

Math. Soc. (N.S.) 34(2), 107–130 (1997). https://doi.org/10.1090/

S0273-0979-97-00712-X

[3] Sala, M., Mora, T., Perret, L., Sakata, S., Traverso, C. (eds.): Gröbner
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