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Math 791: Modern Algebra

Spring 2019

Lecture 28: Tuesday, May 9. Thanks, everyone, for a great semester!
We started class by applying Sylow’s theorem to prove that a group of order 132 cannot by

simple, by considering its various Sylow p-subgroups, the orders of elements in these, and how they
overlap one another.

From now on today, we will consider finite abelian groups.
Next, we stated and proved the following lemma, which allows us to bread down a group into

a direct product of subgroups: If G is abelian of order mn, where m and n are relatively prime,
then

G ∼= H ×K

where H = {x ∈ G | xm = 1} and K = {y ∈ G | yn = 1}. First we proved that H and K are
subgroups of G. Then, along with applying Lagrange’s theorem and the first isomorphism theorem,
we also needed to confirm that G = HK using Bézout’s theorem.

By applying this lemma inductively, we obtain the following corollary: If |G| = pα1
1 · · · pαr

r ,
where the pi are distinct primes, then

G ∼= G1 × · · · ×Gr

for some groups Gi for which |Gi| = pαi .
From here we stated an important technical lemma: If G is abelian of order pα for p a

prime, let x ∈ G be an element of maximal order among all elements in G. Then for some subgroup
H of G,

G ∼= 〈x〉 ×H.

Applying this inductively, we find that any finite group G of order pα is the direct product of cyclic
groups; i.e.,

G ∼= Zpn1 × · · · × ×Zpnk

where n1 + · · ·+ nk = α. We saw that the corollary above, with the technical lemma, show that a
finite abelian group can be written as a direct product of cyclic groups, each of order some prime,
to some power.

Next wrote down three finite abelian groups of order 27, and argued in an ad hoc way that they
are distinct. This motivates the full statement of theFundamental theorem of finite abelian
groups, which we have already proved a good part of: If G is a finite abelian group, then

G ∼= Zq1 × · · · × Zqt

where the qi are powers of (possibly repeated) primes, and this representation is unique up to
rearranging the indices.

We used the theorem (and the CRT) to find all finite abelian groups of order 90, and then gave
a sketch of the proof of the technical lemma.
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Lecture 27: Tuesday, May 7. Throughout class today, p denoted a prime integer. We noticed
that for any integer x > 1, we can write x = pαm uniquely, where α ≥ 0 and p - m.

We defined a p-group as a group of order pα for some integer α ≥ 0. A subgroup H of a group
G is called a p-subgroup if H is a p-group.

If |G| = pαm and p - m, then if H ≤ G and |H| = pα, then H is called a Sylow p-subgroup
of G. We use Sylp(G) to denote the set of all Sylow p-subgroups of G, and np = np(G) to denote
the number of Sylow p-subgroups.

Now we turned to the study of finite groups. First, we recalled that Sylow’s theorem ensures a
subgroup of order p for any prime p dividing the order of G. Next, we turned to Sylow’s theorem,
adding on to our preliminary version that we stated earlier:
Sylow’s theorem: Suppose that G = pαm, where p - m.

1. G has a Sylow p-subgroup; i.e., Sylp(G) 6= ∅.

2. Any two Sylow p-subgroups are conjugate; i.e., given P,Q ∈ Sylp(G), there exists g ∈ G for
which

Q = gPg−1.

In particular, any two Sylow p-subgroups are isomorphic.

3. np ≡ 1 mod p and np | m.

We went through some examples of determining Sylow p-subgroups, and verified that the num-
ber of them line up with part (3) of the theorem. For example, we noted that if p - G, then
the unique Sylow p-subgroup is just 1. On the other hand, if |G| = pα, then the unique Sylow
p-subgroup of G is G itself. We found all Sylow 2-subgroups and Sylow 2-subgroups of S3. We also
saw that part (3) of the theorem says that for S4, the number of Sylow 2-subgroups is either 1 or
3, and the number of Sylow 3-subgroups is 1 or 4. As an exercise, investigate which is the case.

We proved that given a Sylow p-subgroup of a group G, then P E G if and only if np = 1; i.e.,
P is the unique Sylow p=subgroup of G.

After this, we turned to applications of Sylow’s theorem. In order to describe these, we defined
a simple group as a group of order at least two, whose only normal subgroups are the trivial group,
and the group itself.

We proved that if G has order pq for distinct primes p < q, We proved that G is not simple. In
particular, it has a unique Sylow q-subgroup, which is normal by our corollary.

Next, we turned to groups G of order p2q, where p and q are distinct primes. We proved that
if p > q, then there is a unique Sylow p-subgroup of G, which we know is normal. On the other
hand, we proved that if p < q, either there is a unique Sylow q-subgroup (which is again normal),
or |G| = 12. In fact, any group of order 12 has a normal subgroup (check out the example on page
144 of our text), so any group of order p2q is not simple.

Finally, we saw that Z6
∼= Z2×Z3, but Z4 6∼= Z2×Z2. This leads us into our final main theorem,

which we will cover next time!

Lecture 26: Thursday, May 2. Today, we covered the isomorphism theorems for groups.
After reviewing the first isomorphim theorem, given H and K subgroups of a group G, we defined
the set HK = {hk | h ∈ H, k ∈ K}. We stated the fact that HK is a subgroup of G if and only
if HK = KH, and proved one direction of this characterization. The other direction was left as a
straightforward exercise.
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Next, we stated the second isomorphism theorem for groups, which we subtitled “a
diamond of subgroups:”

Given subgroups A and B of a group G, if A ≤ NG(B), then AB ≤ G, B E AB, A ∩ B E A,
and

AB/B ∼= A/A ∩B.

We noticed that the initial conclusions are required to even have that these quotients are themselves
groups. After checking these initial conclusions by hand, we finished the proof of this theorem by
applying the first isomorphism theorem to the surjective homomorphism ϕ : A→ AB/B given by
ϕ(a) = aB, whose kernel is A ∩B.

Next, we skipped the third isomorphism theorem and turned to the fourth isomorphism
theorem for groups, subtitled “relating the lattice of subgroups of a group G to that of a
quotient group G/N :”

If N is a normal subgroup of a group G, then there is a one-to-one correspondence between
subgroups of G containing N , and subgroups of the quotient group G/N . In this bijection, a
subgroup A of G containing N corresponds to the subgroup A = A/N . Moreover,

1. A ≤ B ⇐⇒ A = B

2. A ≤ B =⇒ |B : A| = |B : A|

3. A ∩B = A ∩B

4. A E G ⇐⇒ A E B

The proof of each part is straightforward, following through with the definition of cosets.
We gave the beautiful example of the lattice of subgroups of D8, compared to the lattice of D8

modulo normal subgroup 〈r2〉.
We returned to cover the third isomorphism theorem, and although we did not originally

mean to “skip over” it, this was an advantageous in that we saw that the fourth one informs us on
this one. We subtitled this theorem “taking quotients of quotient groups,” and then sub-subtitled
it “invert and cancel:”

Given normal subgroups H and K of a group G, we have that K/H E G/H and

(G/H) / (K/H) ∼= (G/K)

i.e., G/H ∼= G/H if the bar denotes the quotient by H.
Finally, we stated the essential fact for group homomorphisms induced on quotient groups,

an analog of the one we proved for rings: If ϕ : G → H is a group homomorphism, then for
N E G, ϕ̃ : G/N → H given by ϕ̃(gH) = ϕ(g) is a well-defined group homomorphism if and only
if N ≤ kerϕ.

Lecture 25: Tuesday, April 30. We started class by recalling the definition of a normal
subgroup of a group, and the criterion in which to tell whether two cosets of a group coincide.

We recalled the statement that a subgroup of a group is normal if and only if it is the kernel of
some group homomorphism from the group to some other group. We sketched a proof.

Next, we discussed some examples of normal subgroups, pointing out that the trivial group,
and the group itself, are normal subgroups of any group. Moreover, any subgroup of an abelian
group is normal.
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Turning to examples of quotient groups, we proved that finite cyclic group (so abelian) modulo
any subgroup is cyclic. We also argued that for any field F and integer n ≥ 1, GLn(F )/SLn(F ) ∼=
F×.

We showed, by example, that an abelian subgroup of a (non-abelian) group is not necessarily
normal. However, if N ≤ G and N is a subgroup of the center Z(G) of G, then N E G. As an
example, we computed the center of D8 as Z = {1.r2}, and computed the four cosets of D8/Z.

This calculation naturally leads in to Lagrange’s theorem: If G is a finite group and H ≤ G,
then |H|

∣∣|G| and the number of left cosets of H in G is |G|/|H|. As a consequence, if N E G, then
|N/G| = |N |/|G|. We proved the theorem using the fact that the left cosets partition G. In the
proof, we shoed that the number of elements in each coset are the same.

We stated several immediate consequences of Lagrange’s theorem. For instance, if x ∈ G and
G is finite, then |x|

∣∣|G|, so that in particular, x|G| = 1. Moreover, if p is prime and |G| = p, then
G must be cyclic of order p.

Given H a subgroup of a group (that is not necessarily finite) G. Then the index of H
in G, denoted |G : H|, is the number of left cosets of H in G. Therefore, if G is finite, then
|G : H| = |G|/|H|, which equals |G/H| if H E G. However, we used the example 〈n〉 ⊆ Z to show
that if a group G is infinite, then it is not necessarily true that the index of a subgroup in G must
be infinite.

Using the theory built to far, we proved that if H is a subgroup of a group G and |G : H| = 2,
then H is normal in G, and G/H ∼= Z2!

We next pointed out that although 〈s〉 E 〈s, r2〉 E D8 (and each subgroup has index 2 in the
next group), 〈s〉 6E D8 since rsr−1 = sr2 /∈ 〈s〉.

After this, we stated Cauchy’s theorem; its proof (§3.2,#9) is group homework: If G is finite
and a prime p divides |G|, then G has an element of order p. We also stated a preliminary version
of Sylow’s theorem: If G is a finite group of order pαm, where p is a prime and p - m, then G
has a subgroup of order pα.

Finally, we stated the First isomorphism theorem for groups, that has already been proved:
If ϕ : G → H is a group homomorphism, then kerϕ E G and G/ kerϕ ∼= Imϕ. As consequences,
we know that ϕ is injective if and only if kerϕ = 1, and |G : kerϕ| = | Imϕ|.

Be ready for a quiz on normal subgroups and quotient groups on Thursday!

Lecture 24: Thursday, April 24. We stated class by defining the cosets of a subgroup in a
group: If N ≤ G and g ∈ G, then we define the left coset of g as gN = {gn | n ∈ N}, and the
right coset of g as Ng = {ng | n ∈ N}. Any element of a coset is called a representative of the
coset.

We can think of the cosets as “translations” of the subgroup by an element of the group. If G
has addition as its operation, we write the cosets analogously as g+N and N + g. We noticed how
this definition serves as an analog of the cosets of a ring modulo an ideal.

We then rewrote the last proposition stated last class in terms of cosets: Let ϕ : G → H be
a group homomorphism with kernel K. Moreover, let X = ϕ−1(a) ∈ G/K for some a ∈ H. Then
for any u ∈ X,

X = uK = Ku.

We prove this proposition, and pointed out that this means that the left cosets of the kernel K of
a homomorphism, which are the fibers of the homomorphism, are precisely the elements of G/K.
Moreover, the operation we defined on the fibers in G/K is identical to the operation on the cosets
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defined by, for u ∈ G,
(uK)(vK) = (uv)K.

We explicitly went through several examples of quotients G/K, now writing the elements as
left cosets. One example was projection from R2 to R, onto the first coordinate; the cosets are lines
x = 1, and the operation is given by (x = 1) + (x = b) = (x = a+ b).

Now we turned to the following looming question: Can we define a quotient group G/N for
any subgroup N of G?

We started to address this question by studying the cosets of N ≤ G in more detail, proving
the following:

• The set of left cosets of N in G partition G, so that uN 6= vN ⇐⇒ uN ∩ vN = ∅.

• uN = vN ⇐⇒ v−1u ∈ N .

• In particular, vN = uN ⇐⇒ v ∈ uN .

Finally, we were able to address the question above, proving the following theorem: Given a
subgroup N of a group G, the operation on left cosets given by

uN · vN = (uv)N

is well defined if and only if gng−1 ∈ N for all g ∈ G, and all n ∈ N .
We left the following additional (and very important) statement as a straightforward exercise:

In the case that the operation is well-defined, the left cosets form a group under this operation,
which we call the quotient/factor group G/N . In particular, the identity is N = 1N and the
inverse of gN for g ∈ G is g−1N .

Finally, we gave the following series of definitions: Given N a subgroup of a group G,

• For g ∈ G and n ∈ N , gng−1 is the conjugate of n by g.

• For g ∈ G, gNg−1 = {gng−1 | n ∈ N} is the conjugate of N by g.

• We say that g normalizes N if gNg−1 = N .

• N is a normal subgroup of G if every element of G normalizes N ; i.e., for all g ∈ G,

gNg−1 = N

To signify that N is a normal subgroup of G, we write N E G.

To wrap up our work so far, we noted that the following are equivalent for a subgroup N
of G:

1. N E G.

2. gNg−1 ⊆ N for all g ∈ G.

3. The set of left cosets {gN | g ∈ G} of N form a group G/N under the operation
gN · g′N = gg′N .

4. The left and right cosets coincide; i.e., gN = Ng for all g ∈ G.

5. NG(N) = G.

5
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Finally, we related the theory built for quotient groups constructed modulo the kernel of a
homomorphism by stating the following fundamental theorem: A subgroup N of a group G
is normal if and only if N is the kernel of a group homomorphism from G to some group H.

Lecture 23: Tuesday, April 23. We started class today by introducing the notation Zn for a
finite cyclic group of order n under multiplication; from our theory proved last time, we know that
Zn ∼= Z/nZ where, of course, the latter group has addition as its operation.

Next, we proved the first part of the final theorem stated last time, classifying all subgroups of
any cyclic group. We left the second part as homework; please refer to the proof of the third part
in the book for hints, if you need a hint (you probably don’t!).

After this, we used this theorem, and our theorem classifying all generators of a cyclic group
(given one generator), to find all subgroups, and all their generators, of Z/12Z. We also noticed
which subgroups sit inside one another.

Next, we returned to our discussion of group homomorphisms, defining the kernel of a group
homomorphism ϕ : G→ H as

kerϕ = {g ∈ G | ϕ(g) = 1H}.
We stated the following facts about group homomorphisms, and proved parts (1) and (4). In

particular, we noticed that things work differently that for ring homomorphisms, so we need to be
especially careful, since we are so well-versed in dealing with the ring version!

1. ϕ(1g) = 1H .

2. For all g ∈ G, ϕ(g−1) = ϕ(g)−1.

3. For all g ∈ G and n ∈ Z, ϕ(gn) = ϕ(g)n.

4. kerϕ ≤ G.

5. Imϕ ≤ H.

From here, we recalled that a fiber over t ∈ T of a function f : S → T between sets is f−1(s),
the set of elements in S mapping to t.

Given a group homomorphism ϕ : G→ H, we considered the fibers Xa := ϕ−1(a) over elements
a ∈ H, drawing this pictorially. Notice that X1 = ϕ−1(1) = kerϕ. After first motivating this
heuristically, we proved that the fibers form a group under the following operation induced by the
group operation in H: Given a, b ∈ H, we define

XaXb = Xab.

This partitions G into pieces, so that the pieces form a group. We noticed what happens in this
setup when ϕ is an isomorphism, or the trivial homomorphism sending every element to the identity.

We call the new group a quotient group or factor group modulo the kernel of ϕ, and denote
it G/K, where K = kerϕ.

We saw very concretely that the quotient group modulo the kernel of the group homomorphism
ϕ : Z→ Zn given by a→ xa, where x is a generator for Zn, is equal to Z/n/Z, which we know, in
turn, is isomorphic to Zn.

Finally, we stated a proposition that will help us transition to the study of quotient groups
modulo a general subgroup: Given a group homomorphism ϕ : G → H with kernel K, let X =
ϕ−1(a) ∈ G/K for some element a ∈ K. Then for any u ∈ X,

X = {uk | k ∈ K} − {ku | k ∈ K}.

6
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Lecture 22: Thursday, April 18. We started class by recalling the definition of the centralizer
CG(A) of a nonempty subset A of a group G, and the center of G. We proved both are subgroups
of G. For g ∈ G, we then defined the set gAg−1 as the set of elements of the form gag−1, for a ∈ A.
We then defined the normalizer of A in G as

NG(A) = {g ∈ G | gAg−1 −A}

which is also a subgroup of G. We noticed that

Z(G) ≤ CG(A) ≤ NG(A) ≤ G

and that if G is abelian, then Z(G) = G, so that every subgroup above must coincide with G.
After this, we carried out a detailed study of cyclic groups. We call a group H cyclic if it

can be generated by one element x ∈ H, i.e.,

H = {xn | n ∈ Z},

or using additive notation, H = {nx | n ∈ Z}. If H is generated by x ∈ H, then we write H = 〈x〉.
We gave several examples, showing that ±1 are generators for Z or Z/nZ, 2 is not a generator

of Z/4Z, and that 2 is a generator for (Z/5Z)×, but that (Z/8Z)× is not cyclic.
We stated and proved a proposition: If H = 〈x〉, then |H| = |x|. Moreover,

1. If |H| = n <∞, then
a, x, x2, . . . , xn−1

are all the (distinct) elements of H.

2. If |H| =∞, then xn 6= 1 for any nonzero integer n, and xa 6= xb for all distinct integers a, b.

After this, we stated and proved, using Bézout’s theorem, the following fact: If x is an element
of a group and xm = xn = 1 for some integers m,n, then xd = 1, where d = (m,n), the greatest
common divisor of m and n. In particular (taking n = |x|), if xm = 1, then |x| | m.

After this, we wrapped our work together with the following theorem: Any two cyclic groups
of the same order are isomorphic. Moreover,

1. If n ∈ Z+ and |〈x〉| = |〈y〉| = n, then the following is a well-defined isomorphism:

ϕ :〈x〉 → 〈y〉
xk 7→ yk

2. If 〈x〉 is infinite, then the following is a well-defined isomorphism:

ϕ : Z→ 〈x〉
k 7→ xk

We used this theorem to conclude that any finite cyclic group of order n is isomorphic to Z/nZ:
for example, the subgroup of D2n of rotations.

After this, stated a proposition: If x is an element of any group and a is an integer, then

1. If |x| <∞, then |xa| =∞

7
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2. If |x| = n <∞, then |xa| = n
(n,a) . In particular, if a | n, then |xa| = n

a .

We used this to deduce following: Suppose that H = 〈x〉. Then

1. If |x| <∞, then H = 〈xa〉 if and only if a = ±1.

2. If |x| = n <∞, then |H| = 〈xa〉 if and only if (a, n) = 1, so that in particular, the number of
generators of H is ϕ(n).

We applied this theorem to our examples presented earlier in class.
Finally, we stated the first two parts of the following theorem about subgroups of a cyclic

group H = 〈x〉.

1. Every subgroup of H is cyclic, and if K ≤ H, then K = {1} or K = 〈xd〉, for d the smallest
positive integer for which xd ∈ K.

2. If |H| =∞ and a, b ≥ 0, then 〈xa〉 6= 〈xb〉, and 〈xa〉 = 〈x−a〉, so that the subgroups of H are
in one-to-one correspondence with the nonnegative integers, where k ↔ 〈xk〉.

3. If |H| = n < ∞, then for all a > 0, a | n, there exists a unique subgroup of H or order a,
〈xd〉, where d = n

a , and for all integers m, 〈xm〉 = 〈x(n,m)〉. Therefore, the subgroups of H
are in one-to-one correspondence with the positive divisors of n.

Lecture 21: Tuesday, April 16. Today, we introduced symmetric groups, and did several
examples. We also defined certain matrix groups; in particular, the special and general linear
groups: If F is a field,

SLn(F ) = {A ∈Mn(F ) | det(A) = 1}
GLn(F ) = {A ∈Mn(F ) | det(A) 6= 0}

After this, we defined a group homomorphism of groups as a function that preserves the
group operations: Given groupgroups, (G, ∗) and (H, �), ϕ : G → H is a group homomorphism if
for all g, g′ ∈ G,

ϕ(g ∗ g′) = ϕ(g) � ϕ(g′).

Using our typical multiplication for arbitrary groups, this translates as ϕ(gg′) = ϕ(g)ϕ(g′).
We say that a group homomorphism is a group isomorphism if it bijective, and call the two

groups isomorphic, writing G ∼= H.
An example of a group isomorphism is the map exp : R→ R+ (where R is the additive group,

and R+ is the multiplicative group) given by exp(x) = ex, so that ex+y = exey.
We noted that if ϕ : G → H is a group isomorphism, then |G| = |H|, G is abelian if and only

if H is abelian, and the order of x ∈ G is the same as the order of ϕ(x) ∈ H.
After this, we defined a subgroup H of a group G as a nonempty subset that is closed under

taking products and taking inverses. We write H ≤ G as shorthand for “H is a subgroup of G.”
We gave several examples of subgroups, noting that the set of rotations is a subgroup of the

dihedral group, but the set of reflections is not.
We then stated the subgroup criterion: a subset H of a group G is a subgroup of G if and

only if:

1. H 6= ∅

8
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2. xy−1 ∈ H for all x, y ∈ H.

Moreover, if |H| < ∞, we have a finite subgroup criterion: a finite subset H of a group G
is a subgroup of G if and only if:

1. H 6= ∅

2. xy ∈ H for all x, y ∈ H.

In a group effort, we proved both criteria.
Finally, given a group G and a nonempty subset A of G, the centralizer of A in G is

CG(A) = {g ∈ G | gag−1 = a for all a ∈ A}.

Since gag−1 = a if and only if ga = ag, CG(A) consists of all elements in G that commute with
every element in A. The center Z(G) of G is CG(G); i.e.,

Z(G) = {g ∈ G | ghg−1 = h for all h ∈ H}.

In fact, Z(G) ≤ CG(A) ≤ G for all nonempty subsets A of G.

Lecture 20: Tuesday, April 9. We started class by briefly going over some “tricks” for finding
minimal polynomials.

Next, we defined a group (G, ∗) as a set G with a binary operation ∗ satisfying the following:

1. Associativity : For all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. Identity : There exists an element e ∈ G for which e ∗ a = a ∗ e = a for every a ∈ G.

3. Inverses: Given a ∈ G, there exists a−1 ∈ G for which a ∗ a−1 = a−1 ∗ a = e.

Moreover, we call (G∗) abelian if it satisfies the commutative law : a ∗ b = b ∗ a for all a, b ∈ G.
Instead of writing (G, ∗), we often say that “G is a group under the operation ∗.”
We gave several examples of groups: A ring R is an abelian group under addition, with identity

0 and inverse −r of an element r ∈ R. Thus all of the rings we are familiar with are groups under
addition, including Z,Q,R,C,Z/nZ, rings of functions, matrix rings, polynomial rings, products of
rings, quotient rings, . . . In each case, 0 is the identity, and negatives are inverses.

Notice, though, R is never a group under multiplication since then 1 ∈ R, so that there is an
identity, but 1 ∗ 0 = 0 6= 1. However, we noticed that we can make some familiar rings into groups
under addition by removing 0; e.g., Q\{0}, R\{0}, and C\{0} are all groups under multiplication
with identity 1. On the other hand, (Z \ {0}, ·) cannot be a group since, for example, 2 has no
inverse. We can fix this by considering the examples above as the sets of units of the ring: e.g.,
Q×Q \ {0}. In fact, Z× = {−1, 1} is also a group under multiplication, and we checked that this is
the “same” group as (Z/2Z,+).

In fact, we verified that given any ring R with 1, (R∗, ·) is a group. We saw what this means
for R = Z/nZ and R = Mn(R).

After this, we defined the product of rings (G, ∗) and (H, ?): G × G is defined as the set of
coordinate pairs (g, h) for g ∈ G and h ∈ H, and given g, g′ ∈ G and h, h′ ∈ H, we define the
operation � as (g, h) � (g′, h′) = (g ∗ g′, h ? h′).

9



Spring 2019 Math 791 Daily Update 10

We stated a theorem that collected several facts about a group (G, ∗): Its identity is unique,
inverses are unique, (a−1)−1 = a for all a ∈ G, and (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G.

Since the operation ∗ becomes unwieldy, we often use · as the operation for an abstract group
(and often omit the symbol in products), 1 for its identity, and (like we have today) a−1 for the
inverse of an element a of the group.

We stated and showed that cancellation holds in groups, and given elements a, b of a group,
equations of the form ax = b and xa = b have unique solutions in the group.

Given an element x of a group G, the order of x, denoted |x|, is the smallest positive integer
for which xn = 1, if this number exists. If no such integer exists, we say that the order is infinite.

We went through several examples of finding orders of an element in a group.
After this, we introduced the dihedral group D2n of symmetries of a regular n-gon. We did

examples with n = 3 and n = 4, and showed in general that the group D2n has order 2n. We also
defined the elements r and s of D2n, after putting the n-gon in the plane, centered at the origin: r
is the rotation clockwise by the angle 2π/n, and s is the reflection about the line passing through
the first vertex, and the origin.

Lecture 19: Thursday, April 4. We started class by recalling that a finite field exten-
sion is algebraic, but pointed out that although we proved that the converse holds for simple, or
even finitely generated extensions, it does not hold in general; for instance, consider the extension
Q(
√

2, 2
√

2, 4
√

2, . . .) of Q.
Next, we stated and proved a corollary of the partial converse above: Given a field extension

K/F , the set of elements F of K that are algebraic over F form a subfield of K. In fact, we call
this the algebraic closure of F in K. We investigated the algebraic closure of Q in C.

Next, we discussed the fact that if F ⊆ K ⊆ L are fields, and K/F and L/K are both algebraic,
then L/F is also algebraic.

After this, we defined what it means for a field extension K of a field F to be a splitting field
for f ∈ F [x]: f splits completely into linear factors over K, but not over any subfield of K. In fact,
there exists a splitting field for any polynomial over a field, and it is unique up to isomorphism.

We went through several examples, finding splitting fields for x2 − 2, (x2 − 2)(x2 − 3), x3 −
2, x2 + 1 ∈ Q[x]. For each, we found the degree of the extension, and it was not always the degree
of the polynomial. In fact, our proof of existence of the splitting field shows that the degree of the
splitting field over the base field is at most n!, where n = deg(f).

After this, we started a discussion on the splitting field of xn − 1 ∈ Q[x], which leads naturally
to the notion of the n-th roots of unity.

Finally, as our capstone to the field theory in this course, we sketched a proof of the following
fundamental theorem: Given any prime integer p and integer n ≥ 1, there exists a field Fpn with
pn elements.

Lecture 18: Tuesday, April 2. We started class by pointing out that the last problem on Quiz
6 requires Gauss’ lemma (like the first problem on Quiz 7!).

Next, we recalled the notions of algebraic and transcendental, and discussed some of what is
known about real numbers that are algebraic/transcendental over the field of rational numbers.

Again, throughout class today, K/F is a field extension.

10
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We recalled where we left off in the proof of existence of the minimal polynomial mα,F (x) =
mα(x) ∈ F [x] of α ∈ K over F . Our work essentially finished off the proof, modulo some expla-
nation. Recall that f ∈ F [x] has α as a root if and only if mα | f , and that we call degmα the
degree of α ∈ K over F , often denoted degα.

We noted that by our work so far shows that if α is algebraic over F , then

F (α) ∼= F [x]/(mα(x))

since K is an extension field containing a root of of mα(x). Moreover,

[F (α) : F ] = degmα(x) = degα.

We went through several basic examples, finding the degrees and/or minimial polynomials:√
2 ∈ R over Q, 3

√
2 ∈ R over Q, n

√
2 over Q, the same over R, and the degree of any root of

x2 − 3x− 1 over Q.
From here, we turned to some fundamental results on field extensions. We proved that α ∈ K

is algebraic over F if and only if the extension F (α)/F is finite. As a corollary, a finite extension
is necessarily algebraic (but the converse need not always hold!).

We gave the basic argument behind the fact that if F ⊆ K ⊆ L are fields, then

[L : F ] = [L : K][K : F ]

even if any are infinite. As a corollary, a finite extension of a finite extension is again a finite
extension.

We saw the above statement realized for the extensions Q ⊆ Q(
√

2) ⊆ Q( 6
√

2).
Next, we defined an extension K/F as finitely generated if K = F (α1, . . . , αn) for some

αi ∈ K. In fact, given α, β ∈ K, F (α, β) = (F (α))(β), and we can “extend” inductively to get a
more general statement for finitely generated extensions.

We considered some examples of finitely generated extensions. We saw that Q(
√

2, 6
√

2 is the
simple extension Q( 6

√
2. and that [Q(

√
2,
√

3) : Q] = 4 by carefully considering the extensions
Q ⊆ Q(

√
2) ⊆ (

√
2,
√

3).
We stated the following theorem: K/F is a finite extension if and only if K = F (α1, . . . , αn)

for some αi ∈ K algebraic. Moreover, [K : F ] is bounded above by the product of the [F (αi) : F ].
We gave the basic idea behind this.

Finally, we stated and proved a corollary: If α, β ∈ K are algebraic over F , then

α± β, αβ, and
α

β

(where the last requires β 6= 0) are algebraic over F . In particular, the inverse of any algebraic
element is again algebraic over F .

Lecture 17: Thursday, March 28. We started class by pointing out some common mistakes
on our quiz on determining whether certain polynomials are irreducible. We know that if F is a
field and f ∈ F is a nonzero polynomial, then for a ∈ F ,

f(a) = 0 ⇐⇒ (x− a) | f.

On the other hand, if g ∈ R[x] for R any commutative ring, we have that if a ∈ R and (x−a) | g,
then g = (x−a)h for some h ∈ R[x], so if deg g ≥ 2, then g is reducible. However, the converse does

11
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not necessarily hold; for instance, consider g = x2 − xy − 1 in the polynomial ring R[x] = Q[x, y],
where R = Q[y]. (Note that R[x] has unique factorization!) As an element of R[x], y + 1 ∈ R is
a root since g(y + 1) = (y + 1)2 − y(y + 1) − (y + 1) = 0, but it can be shown by hand that g is
irreducible – try it!

Moreover, it is not true in general that if a polynomial f of degree at least one has no root, then
it is irreducible (even over a field!) For instance, f(x) = (x2 + 1)(x2 + 4) ∈ Q[x] is irreducible, but
has no root in Q! We do know that this is true, however, for polynomials over a field with degree
2 or 3.

Next, we fixed the following setup for the rest of our class period: K is an extension field of a
field F , and fix α ∈ K.

Then the intersection of all fields in K that contain both F and α is again a field, and it is
the minimal subfield of K that contain both F and α. This field is denoted F (α), and we call it a
simple extension of F , and α a primitive element for the extension.

We can apply the same process to obtain a minimal subfield of K containing F and α1, α2, . . . ∈
K, denoted F (α1, α2, . . .), and called the subfield generated by α1, α2, . . . over F .

We gave several examples, showing that C = R(i), and also equals R(−i), and noticing that the
notation for quadratic fields use the same notation F (α); i.e., Q(

√
2) is the simple extension of Q

with primitive element
√

2 ∈ R.
We stated an sketched a proof of the following theorem: If f ∈ F [x] is irreducible, K is an

extension field of F , and α ∈ K is a root of f , then

F (α) ∼= F [x]/(f).

In particular, this shows that given any roots α, β of f in K, F (α) ∼= F (β); i.e., these simple
extensions are “algebraically indistinguishable.” As a corollary, we find that if deg(f) = n, then

F (α) = {a0 + a1α+ · · ·+ an−1α
n−1 | ai ∈ F}.

Next, we defined what it means for α ∈ K to be algebraic over F : α is a root of some
polynomial over F . If α is not algebraic over F , we call it transcendental over F . For instance,
i ∈ C is algebraic over R since i satisfies the equation x2 + 1.

If every element of K is algebraic over F , we say that K is algebraic over F .
Note: If F ⊆ K ⊆ L are fields and L is algebraic over F , then it is clear from the definition

that K is also algebraic over F .
We then stated a fundamental theorem: If α ∈ K is algebraic over F , then there exists a

unique monic irreducible polynomial mα,F (x) ∈ F [x] with α as a root. Moreover, any polynomial
f ∈ F [x] with α as a root is a multiple of mα,F (x).

We call mα,F (x) the minimal polynomial of α over F , and often denote it mα(x) if the field
F is apparent from the the context. Moreover, we call degmα,F the degree of α over F .

We proved part of the theorem above, and we’ll return to this next time.

Lecture 16: Tuesday, March 26. Throughout class today, F denotes a field. Today we had
a very concrete and computational class, where we pursued the following question proposed at the
end of class last time:

Question: Given a field F and f ∈ F [x] with no roots in F , is there a field extension K/F (so
that f ∈ K[x] as well) for which f has a root in K?

12
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We went through some examples, noticing that K = R works for f = x2−5 ∈ Q[x], C works for
f = x2 + 5 ∈ R[x], and Q itself works for f = x2 − 25 ∈ Q[x]. However, we could not immediately
determine a field extension K of F2 for which f = x2 + x+ 1 ∈ F2[x] has a root in K. Note that if
p is prime, Fp denotes the finite field Z/pZ.

We turned to the question of whether R is the “smallest” K for which f = x2 − 5 ∈ Q[x] has a
root in K. We showed that Q can be identified as a subfield of the ring

K = Q[x]/(x2 − 5),

which is itself a field because x2 − 5 is irreducible in Q[x]. More specifically, the homomorphism
Q → K given by a 7→ a is an injective ring homomorphism, so that its image in K is a field
isomorphic to Q. Identifying Q with this subfield, we found that f has root x ∈ K, so that K
satisfies the conclusion of our proposed question. Finally, we also noticed that K can be identified
naturally as a subfield of R, and under this identification, K is strictly contained in R.

Next, we went back to our earlier examples, and used an analogous technique to that above to
find appropriate field extensions K. One important point is that if the polynomial f is reducible
in F [x], it suffices to quotient by one of its irreducible factor.

This discussion naturally leads to the statement of the following theorem: If f ∈ F [x] is
irreducible, then there exists a field extension K/F containing an isomorphic copy of K in which
f has a root in K. The upshot: By identifying F with its isomorphic copy, this theorem shows
that there exists an extension of F in which f has a root.

We gave a detailed sketch of the proof of the theorem; in short, the field K can be taken as
F [x]/(f), and we can regard F as a subfield of K by identifying it with its image under the injective
homomorphism F → K given by a 7→ a. It is not hard to check that x ∈ K is a root of f under
this identification.

With the same notation as the argument above, by studying an example, we notices that the
identification of K = F [x]/(f) as a field extension of F makes K a vector space over F . We
determined that if θ denotes the element x in K (so that, in particular, θ ∈ K is a root of f), the
elements

1, θ, θ2, . . . , θn−1

form a basis for K as a vector space over F . In particular, [K : F ] = n, and

K = {a0 + a1θ + a2θ
2 + · · ·+ θn−1 | a0, . . . , an−1 ∈ F}

i.e., K consists of all polynomials of degree less than n in the variable θ .
We went through several examples of identifying the extension field F [x]/(f) as a field we are

already familiar with (e.g., R[x]/(x2 + 1) as C, where θ = x corresponds to i, and Q[x]/(x2 + 1) as
the quadrative field Q(

√
2). We also did computations in the field F [x]/(f); i.e., finding the inverse

of a nonzero element by using the Euclidean Algorithm and back substitution.
Finally, we mentioned that like the quadratic field Q(

√
d) sitting between Q and R or C, given

a field extension K/F , and a polynomial f ∈ F with root α ∈ K, we can define a field F (α) that
sits between F and K. Read about this before next time!

Lecture 15: Thursday, March 21. We started class by recalling that the proof of Gauss’
lemma gives the following more specific information: If f ∈ Z[x] is reducible and deg f ≥ 1, then if
f = gh for g, h ∈ Q[x], then there exist a, b ∈ Q for which ag, bh ∈ Z[x], so that f factors in Z[x]
as (ag)(bh).

13
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Next, we recalled how we construct Q from Z using an equivalence relation. Motivated by this,
we constructed the field of fractions, or quotient field, Q, of a domain R. We gave several
examples.

Given a subset A of a field F , the intersection of all fields contained in F (subfields of F ) is
the smallest field containing A, and is called the field generated by A. If R is a domain, then, in
fact, the quotient field Q is the smallest field containing R. (We made this statement precise.)

If F is a field, the prime subfield of F is the field generated by 1 in F . We showed that the
prime subfield of a given field is either Q (if the characteristic of the field is zero) or Z/pZ, for p a
prime integer (if the characteristic is p).

If F ⊆ K are fields, we say that K is a extension field of F , or say that K/F is a field
extension. Every field is an extension field of its prime subfield.

Given a field extension K/F , multiplication in K makes K a vector space over F , and we call
the dimension of K as a vector space over F is denoted [K : F ], and called the index or degree
of the extension. We call the extension finite/infinite if its index is finite/infinite, respectively.

Finally, we noted that C is constructed as a field containing
In fact, we know that C ∼= R[x]/(x2 + 1).
Next time, we will start by addressing the following more general question: Given a field F and

f ∈ F [x] with no roots in F , is there a field extension K/F for which f has a root in K?

Lecture 14: Tuesday, March 19. We started class by recalling the statement of Eisenstein’s
criterion, and filled in a gap from our proof last time (see below).

Next, we carried out the Euclidean Algorithm for two given polynomials f and g over Z/3Z to
find their greatest common divisor, and to find a principal generator for the ideal (f, g) ⊆ Z/3Z[x].

If F is a field, then F [x] is a domain, and 0 is a prime ideal. On the other hand, if I is a nonzero
ideal of F [x], then since F [x] is a principal ideal domain, then I = (p(x)), where p 6= 0. We showed
that I is a prime ideal if and only if p is irreducible in F [x]. Then we proved that the maximal
ideals of F [x] are exactly the nonzero prime ideals. Every maximal ideal is always prime, and this
extra statement says that every nonzero prime ideal is maximal. In other words, given f ∈ F [x],
(f) is a prime ideal in F [x] if and only if f is irreducible.

Next, we defined the characteristic of a ring, gave some examples, and then proved that the
characteristic of a field is either 0 or a prime integer.

Lecture 13: Thursday, March 7. Today, we started by restating the general Eisenstein’s
criterion: Let P be a prime ideal in a domain R, and let f(x) = xn + an−1x

n−1 + an−2x
n−2 +

· · ·+ a1x+ a0 ∈ R[x], where n ≥ 1. If a0, . . . , an−1 ∈ P , but a0 /∈ P 2, then f is irreducible in R[x].
We also stated its corollary in terms of polynomials over Z: If p is a prime integer and f(x) =

xn+an−1x
n−1 +an−2x

n−2 + · · ·+a1x+a0 ∈ Z[x], where n ≥ 1. If p divides ai for all 0 ≤ i ≤ n−1,
and p2 does not divide a0, then f is irreducible in Z[x] (so also in Q[x] by Gauss’ lemma).

We proved the general statement, but got stuck on one step, which was given as an exercise:
Assume that P is a prime ideal of a ring R, and f = xn + an−1x

n−1 + · · · + a1x + a0 ∈ R[x], for
which all ai ∈ P , but a0 /∈ P 2. Suppose that f(x) = a(x)b(x) for polynomials a, b ∈ R[x] of degree
less than n. Then we certainly have that xn = f(x) = a(x) ·b(x) in (R/P )[x]. Our claim is that this
means that a(x) and b(x) both have zero constant term in (R/P )[x] (so that the constant terms
of a(x) and b(x) are in P ). Try proceeding as follows: Suppose that a(x) has a nonzero constant
term. Then what is the degree of the lowest degree term of a(x) · b(x) = xn?
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We gave several examples of applying Eisenstein’s criterion to conclude that a polynomial is
irreducible over Z, which sometimes involved using the fact that a polynomial f(x) is irreducible if
and only if f(x+ 1) is irreducible. (Notice that the same principle applies more generally!)

From here onward, we considered polynomials in F [x], where F is a field. We defined a greatest
common divisor of two polynomials described the Euclidean Algorithm for polynomials, and
stated Bézout’s theorem for polynomials over a field. We did an example of computing a greatest
common divisor, and the unique monic greatest common divisor of two polynomials, and then using
the steps in the Euclidean Algorithm to find the polynomials guaranteed by Bézout’s theorem.

We then used Bézout’s theorem to motivate the fact that F [x] is a principal ideal domain,
meaning that, like the ring Z, it is a domain in which every ideal is principal. We noticed that in
polynomial rings over rings that are not fields, not every ideal must be principal (e.g., (2, x) ⊆ Z[x]).

Lecture 12: Thursday, February 28. We began class by reviewing a few simple facts about
polynomials f over a field F from last time: First, if f has degree at least one, then it has a linear
factor if and only if it has a root; in fact, a ∈ F is a root if and only if (x− a) | f . We noted that
this implies that a polynomial of degree n over a field has at most n roots. It also implies that If
f has degree 2 or 3, then f is irreducible if and only if f has not root in F .

We noticed used this final criterion to check that f = x2 + x+ 1 has not root as a polynomials
in Z/2Z[x], nor as a polynomial in R[x], but we know it factors in C[x].

We asked a similar question: Is there is a polynomial that is irreducible in Q[x] but reducible
in R[x]? Yes! For example, x2 − 3.

Similarly, we could ask whether there exists a polynomial that is irreducible in Z[x] but reducible
in Q[x]. Several students had good ideas on ways to approach this, but we were not able to come
to any conclusion based on the ideas.

We turned to the study of rational roots of polynomials with integer coefficients. First,
we stated the following proposition: If

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 ∈ Z[x]

and r
s ∈ Q is a root of p written in lowest terms, then r | a0 and s | an. The proof of this statement

is left as a straightforward exercise.
As a consequence of this result, if p(x) is a monic polynomial in Z[x] such that p(d) = 0 for

every divisor d of the constant term of p, then p has no rational roots. We used this statement to
show that x3 − 3x− 1, x2 − 7, and x3 − 101 are irreducible in Q[x].

Next, we stated and proved Gauss’ lemma, which answers our unresolved question in the
negative: Given a polynomial p(x) ∈ Z[x], if p is reducible in Q[x], then p is reducible in Z[x].
Moreover,

We applied Gauss’ lemma in several ways, to conclude that certain polynomials over Z are
irreducible over Q: x4+3x2+x+5, (x−1)(x−2)(x−3)(x−4)(x−5)+1, and (x−1)(x−2) · · · (x−
100) + 1. In each case, we assumed that the polynomial was reducible over Q, so that by Gauss’
lemma, it is reducible over Z; however, we proceeded in different ways in each setting.

Finally, we gave the general statement of Eisenstein’s criterion: If R is a domain and P is a
prime ideal of R, then given

xn + an−1x
n−1 + . . .+ a1x+ a0 ∈ R[x]

where n ≥ 1, if a0, a1, . . . , an−1 ∈ P and a0 /∈ P 2, then f is irreducible in R[x].
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Lecture 11: Tuesday, February 26. Throughout class today, R is a commutative ring with
1. We recalled from last time that given an ideal I of R, the ideal of R[x] generated by the set I,
(I), is the set of all polynomials with coefficients in I, and we have that

R[x]/(I) ∼= (R/I)[x]

and if I is a prime ideal of R, then (I) is an ideal of R[x]. We noted that the final statement is not
true when “prime” is replaced with “maximal:” In fact, (I, x) is a maximal ideal of R[x] if I is a
maximal ideal of R. We also illustrated the isomorphism above for R = Z.

Next, we defined R[x1, x2] as the polynomial ring in indeterminate x2 over the ring R[x1]; i.e.,
R[x1, x2] = (R[x1])[x2]. Inductively, we can then define a polynomial in a finite set of indetermi-
nates, R[x1, . . . , xn]. We gave some examples of elements of the ring Z[x, y].

Finally, we stated that if F is a field, then the polynomial F [x] satisfies the Division Al-
gorithm: Given a(x), b(x) ∈ R[x], where b(x) is a nonzero polynomial, then there exist unique
polynomials q(x), r(x) ∈ F [x] for which deg r(x) < deg b(x), and

a(x) = b(x)q(x) + r(x).

We gave examples illustrating this, and then examples where the Division Algorithm fails to hold
for R = Z and R = Z/6Z. We then proved the Division Algorithm for polynomials over fields.

From here, we gave some basic definitions on polynomials. Given polynomials f, g ∈ R[x], we
say that f divides g, of write f | g, if g = fh for some h ∈ R[x]. We say a polynomial is reducible
if deg f ≥ 1 and whenever f = gh for g, h ∈ R[x], then f or g is a unit. We say that f, g ∈ R[x] are
associates if f = ug for u a unit in R.

We gave examples polynomials that are irreducible over certain fields, but reducible over others.
We proved that over a field, every linear polynomial is irreducible.

We stated precisely the fact that polynomials f ∈ F [x] of degree at least one (i.e., f is a
nonzero, non-unit of F [x]) satisfy Unique Factorization: There exist irreducible polynomials
g1, . . . , gn ∈ F [x] for which

f(x) = g1(x) · · · gn(x)

an if f(x) = h1(x) · · ·hm(x) for irreducible polynomials h1(x), . . . , hm(x) ∈ F [x], then n = m and
we can renumber the hj(x) so that fi(x) = hi(x) for all 1 ≤ i ≤ n.

From here, we stated and proved the Root theorem: Given a polynomial p(x) ∈ F [x], for F
a field, we have that a ∈ F is a root of p(x) (i.e., p(a) = 0) if and only if (x− a) | p.

Finally, we stated and argued that the following holds: Given a polynomial of degree 2 or 3
over a field, the polynomial is irreducible if and only if it has no root in the field. We finished class
by applying this in a few examples.

Lecture 10: Thursday, February 20. Today, we motivated the statement of the Chinese
remainder theorem in terms of actual remainders, and rings Z/nZ.

Next, we recalled the definition of what it means for two ideals ot be comaximal. We also
investivated how to characterize the product of principal ideals.

After this, we stated the general Chinese remainder theorem (CRT) in terms of arbitrary
ideals, and then the specific case dealing with ideals in the ring of integers. We illustrated the
theorem with an example in this case. Next, we proved the general version of the CRT.

After this, we turned to start a more in-depth investigation of polynomial rings. We recalled
the facts that if R is a commutative domain with 1, then
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• deg(pq) = deg(p) + deg(q) for p, q nonzero elements of R[x].

• The units of R[x] are simply the units of R.

• R[x] is also a domain.

We also showed that given an ideal I of R, the ideal of R[x] generated by the set I, (I), is the
set of all polynomials with coefficients in I, and we have that

R[x]/(I) ∼= (R/I)[x]

and if I is a prime ideal of R, then (I) is an ideal of R[x].

Lecture 9: Tuesday, February 19. We started class by recalling that given a commutative
ring R with 1, R is a field if and only if its only ideals are 0 and the ring itself. We used this
to prove that any nonzero ring homomorphism from a field must be injective (by considering the
kernel, an ideal of the field!).

We defined a proper ideal of a ring to be maximal if the only ideals containing this ideal are
the ideal itself, and the ring. We gave several examples and non-examples of maximal ideals in
different rings.

Then we stated a fact (whose proof requires Zorn’s lemma), that in a ring with 1, every proper
ideal is contained in some maximal ideal.

We then stated and proved an important theorem: In a commutative ring R, an ideal I is
maximal if and only if R/I is a field.

Next, we went back to our earlier examples, and confirmed our conclusions about which ideals
are maximal, or made further conclusions in cases where the answer was not immediately clear
(e.g., (2, x) in Z[x]). Filling in details is part of the homework (see below!).

After this, we defined what if means for a proper ideal p of a commutative ring R to be prime:
Whenever a, b ∈ R and ab ∈ p, then a ∈ p or b ∈ p. This definition is motivated by the notion of
a prime integer, and we noticed that the prime ideals of Z are exactly pZ for p prime, along with
the zero ideal.

In fact, we noticed that 0 is a prime ideal of a commutative ring if and only if the ring is a
domain!

We then stated a theorem that says that if R is a commutative ring, an ideal I is prime if and
only if R/I is a domain. The proof is assigned as homework (see below)!

We gave examples of prime and non-prime ideals in Z[x], and saw how C can be “constructed”
from R using quotient rings (see homework problem #4 below!).

Finally, we noticed that the characterizations of prime and maximal ideals in a commutative
ring, in terms of quotients, implies that a maximal ideal is always prime.

Finally, we recalled the definition of a product of rings, and defined what it means for two
ideals in a ring to be comaximal.

Additional homework problems

1. Prove that an ideal I of a commutative ring is prime if and only if R/I is a domain.

2. Prove that Z[x]/(x) ∼= Z.

3. Prove that Z[x]/(2, x) ∼= Z/2Z.
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4. Prove that R[x]/(x2 + 1) ∼= C.

Lecture 8: Thursday, February 14. We reviewed the statement of the first isomorphism
theorem for rints, and noted that it implies that every kernel of a ring homomorphism is an ideal,
and vice versa.

Next, we stated and proved the second isomorphism theorem for rings. Its proof required
the following essential fact about ring homomorphisms from quotient rings: Given a ring homo-
morphism ϕ : R→ S, if I is an ideal of R contained in the kernel of ϕ, then

ϕ̃ : R/I → S

given by ϕ̃(r + I) = ϕ(r) is a well-defined ring homomorphism with the same image as the image
of ϕ, and ϕ̃ is injective if and only if I = kerϕ. You proved most of this in the quiz earlier today!

Next, we explained carefully the statements of the third isomorphism theorem and fourth,
or lattice isomorphism theorem for rings.

From here, we defined a principal ideal (a) of a ring R, which is the smallest ideal containing
some element a ∈ R, which is called the ideal generated by a. Similarly, we defined an ideal
generated by a collection, or subset, of elements of the ring; if this subset is finite, we call the ideal
finitely generated.

We noticed that the zero ideal is always principal, and if a ring contains 1, then the ring itself
is the principal ideal (1). We argued that every ideal in Z has the form nZ for some integer n, so
that every ideal of the integers is principal, since nZ = (n) = (−n).

Next, we turned to studying some ideals in Z[x]. We noticed that the principal ideal (5) can be
described as the collection of all polynomials in which every coefficient is a multiple of 5; similarly,
(2) is the collection of polynomials with even coefficients.

We recalled our familiar examples of ideals in Z[x]: The ideal of all polynomials with zero
constant terms is exactly the principal ideal (x), and the ideal of all polynomials with even constant
term is (2, x); we proved that this latter ideal is not principal!

Finally, we proved that given a commutative ring with 1, this ring is a field if and only if its
only ideals are the zero ideal, and the ring itself.

Lecture 7: Tuesday, February 12. After recalling the definition of an ideal of a ring, we
defined the sum, product, and powers of a given ideal, which are all again ideals of the same
ring. We noted that the product of two ideals sits in their intersection, another ideal, and that the
sum of two ideals is the smallest ideal containing both ideals. We gave a precise example in the
ring of integers.

Next, we motivated the notion of a quotient by studying different spaces, and recalling how
we use representative notation freely in, say, fraction notation. We reviewed the Quotient Rings
worksheet conclusions, to construct a new ring R/I from a ring R and an ideal I of R.

We went through the three examples on the worksheet, and described the corresponding quotient
rings: The ideal I = nZ of R = Z, the ideal I consisting of all polynomials with zero constant term
in R = Z[x], and J the ideal of this same ring consisting of all polynomials with even constant term.
In the last two examples, we saw that the quotient rings can be pretty different from one another
with respect to different ideals (e.g., one was finite, and one infinite)! We drew rough “pictures” to
represent quotient rings in each case.
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Next, we proved that a ring homomorphism is injective if and only if its kernel is the subring
consisting only of zero.

After this, we stated a theorem: Given an ideal I of a ring R, the function

η : R→ R/I

defined by η(r) = r + I is a surjective ring homomorphism with kernel I. This is often called the
natural projection of R onto R/I. Note that the first step was to show that this function is even
well-defined!

We saw this theorem realized in natural ways using our earlier examples. In particular, the
natural projection of Z onto Z/nZ, and evaluation of a polynomial at a point, are both of the form
η above, for appropriate R and I.

From here, we recalled that given a ring homomorphism ϕ : R → S, the kernel of ϕ is always
an ideal of R, and the image is always a subring of S. However, the image need not always be an
ideal of S: for instance, consider the inclusion i : Z→ Q.

Finally, we stated the first isomorphism theorem for rings: Given a ring homomorphism
ϕ : R→ S,

• kerϕ is an ideal of R,
• Imϕ is a subring of S, and
• R/ kerϕ ≡ Imϕ.

We proved the remaining (third) statement.

Lecture 6: Thursday, February 7. Today’s lecture was canceled due to the closure of the
KU campus. The lecture is replaced with the Quotient Rings worksheet, available on the course
website. This worksheet leads students to develop the notion of a quotient ring by defining an
equivalence relation on a ring R determined by a given ideal I, and checking that the equivalence
classes r + I, for r ∈ R, form a ring under “inherited” operations of addition and multiplication.
This ring is called the quotient ring R/I, and the element r + I in this ring is called the coset
of r in R/I.

Lecture 5: Tuesday, February 5. We started class by returning to the question of what the
zero divisors in the ring of continuous functions from [0, 1] to R, which Geoffrey figured out consists
of all functions that vanish on some nonempty open interval in [0, 1].

We also motivated why we use the convention that the zero polynomial is Then for any two
polynomials f, g over any ring, deg(fg) ≤ deg(f) + deg(g).

Next, we recalled the definition of a (ring) homomorphism and defined the kernel of such
a function. We also defined a (ring) isomorphism as a bijective ring homomorphism.

We investigated ring homomorphisms from Z to itself, and concluded that the only ones are
“trivial:” the zero and identity maps. We also noticed that the only ring homomorphism from
Z/n/Z to Z is the zero map. Finally, we gave an example of an evaluation map on a polynomial
ring,

η : R[x]→ R

where η(p(x)) = p(0), which is, in fact, a ring homomorphism.
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We stated a proposition that given an ring homomorphism ϕ : R → S, the image Imϕ is a
subring of S, and the kernel kerϕ is a subring of R. We proved the latter statement, and noticed
that its proof is, in some sense, “too easy.” This motivated the following definition.

Next, given a subset I of R, we defined what it means for I to be a left ideal of R, and a right
ideal of R. A subset I that is both a left ideal and a right ideal is simply called an ideal of R.

We immediately noticed that if R is commutative, to show that a subset I of R is an ideal, than
it is enough to show it is either a right or a left ideal. We also noticed that an I is always subring
of R, but if 1 ∈ I, then I = R. It is also clear that 0 is in any ideal. In fact, it is easy to check
that the set containing only the 0 element is an ideal (which we denote as 0), and the entire ring
is always an ideal.

We saw that given any n ∈ Z, nZ is an ideal of the ring of integers Z. We also conjectured that
if n,m are elements of the ideal I of Z, then the greatest common divisor (n,m) is also in I (check
this!).

We saw that the set of all polynomials with no constant term, along with the zero polynomial,
is an ideal in a polynomial ring R[x]. On the other hand, the set of polynomials with even constant
term is an ideal in Z[x].

Finally, we argued that the only ideals in a field are the 0 ideal, and the entire field.
We stated and proved the fact that ϕ : R → S is a ring homomorphism, that kerϕ is an ideal

of R. We finished by asking an analogous question: Is Imϕ necessarily an ideal of S? As a start,
try thinking about homomorphisms Z→ R!

Lecture 4: Thursday, January 31. Today, we had a second guest lecture by Professor Hailong
Dao. Class began by finishing the discussion on the degree of a polynomial over a commutative
ring R; i.e., an element the polynomial ring R[x]. We finished proving that when R is a domain
and f and g are nonzero polynomials in R[x], then

deg(fg) = deg(f) + deg(g).

Moreover, we noticed that the degree of a constant in R is zero, and our convention is that the
degree of the zero polynomial is −∞. Using these, facts we proved that when R is a domain, then
R[x] is also domain, and the units of [x] are exactly the units of R.

Next, given a ring R, we defined and discussed the ring of n × n matrices, Mn(R), over R.
We explained why the set of upper triangular matrices is a subring of Mn(R).

Finally, we defined a ring homomorphism and a ring isomorphism. We investigated several
examples: the identity map on a ring, the zero map on a ring, and homomorphisms between the
integers Z and the ring Z/nZ.

Lecture 3: Tuesday, January 29. Today, we had a guest lecture from Professor Hailong Dao.
First, we proved that any finite domain must be a field.

Next, we defined a subring of a ring (without referencing the definition of a “group”). Next,
we argued that to verify that a subset of a ring that is a subring, we must only check it is nonempty
and closed under subtraction and multiplication.

After this, we explained how to verify that S = Q[
√

2] is a subring of the ring of real numbers
R. We also saw that S is a field, andZ[

√
2] is a subring of S. We also mentioned how extensions of

Q or Z arise from trying to understand equations like x2 − 2y2 = 1 or x3 + y3 = z3.
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Finally, we defined a polynomial over a given commutative ring R. The polynomials form a
ring, called a polynomial ring, which is denoted R[x]. We stated that when R is a domain, and
g and h are nonzero polynomials, then deg(gh) = deg(g) + deg(h).

Lecture 2: Thursday, January 24. We started class by reviewing the definition of a ring, a
commutative ring, and a ring with unity/identity. We also reviewed what it means for an element
of a ring to be a zero divisor, or a unit. We showed that an element cannot simultaneously be a
zero divisor and a unit.

Next, we described all units and zero divisors of the ring of functions from the closed unit
interval to R, and saw that every nonzero function is one or the other. On the other hand, we
demonstrated that in the ring of continuous functions on the same set that a function be neither a
unit nor a zero divisor.

We defined an integral domain, often just called a domain, as a commutative ring with
identity that contains no zero divisors.

We then proved that whenever a, b, c are elements of a ring, and a is a nonzero element that
is not a zero divisor, we can cancel by a, meaning that if ab = ac, then b = c. In particular, this
implies that we can always cancel by nonzero elements in a domain.

We defined a field as a commutative ring with 1 6= 0 in which all nonzero elements are units.
We noticed that every field is a domain, and Z is a domain that is not a field, while Q, R, and

C are all fields (so also domains). We drew a chart comparing these types of rings, and filled in all
our examples of rings thus far. Missing was an important example of the integers modulo n, so we
began our construction of this ring.

Toward this goal, we defined an equivalence relation on a set, and corresponding equiva-
lence classes, and gave several examples. We noticed that the equivalence classes partition the
set.

Although we will use other important examples soon, our most important example today was
the following equivalence relation on the set of integers Z: given an integer n ≥ 2, a b if and only if
a ≡ b mod n (i.e., n | (b−a)). We studied the equivalence classes in this case, which are often called
congruence classes; the equivalence class of a ∈ Z is denoted a (although the bar is sometimes
suppressed for clarity of notation). The set of congruence classes form a ring, and addition and
multiplication are defined as:

a+ b = a+ b

a · b = a · b.

Of course, it is not immediately that these are well-defined operations, and form a ring; you are
required to check this on your own if you are familiar with the arguments. We define Z/nZ as this
ring of congruence classes; i.e.,

Z/nZ = {0, 1, . . . , n− 1}.

The ring Z/nZ is a commutative ring with unity, and we proved that its zero divisors are the
elements a ∈ Z/nZ such that a and n are relatively prime. On the other hand, we showed that
the zero divisors are precisely all nonzero elements that are not units; i.e., all a such that a has a
common divisor with n.

Using this, we deduced that Z/nZ is a field if and only if n is prime. We used this to put this
ring in our chart in two cases: n prime, and n composite.
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Lecture 1: Tuesday, January 22. Today, we started class by going over the course syllabus,
course requirements, and course website.

Next, we defined a ring, which consists of a set and two binary operations, which we call
addition and multiplication, and denote “+” and “·”, satisfying several axioms:

• Addition satisfies:

– associativity,

– existence of an additive identity (“zero/0”),

– existence of multiplicative inverses (“negatives”), and

– commutativity.

• Multiplication satisfies associativity.

• The Distributive Law holds.

The first four axioms involving addition say that a ring is an abelian group under addition,
and the property of distributivity essentially says that the two operations are compatible with one
another.

We gave several examples of rings, starting with the set motivating the definition, the set Z of
integers, using the typical operations of addition and multiplication. The larger sets Q, R, C are
also rings. The trivial ring consisting only of the zero element is not ideal, since often we want
to use a ring with a multiplicative identity (“1”, often just called an identity, or unity) that
is distinct from 0. We defined what it means for a ring to have a multiplicative identity. The ring
2Z consisting of all even integers has no identity.

We defined what it means for a ring to be commutative, and gave the example of the ring
Mn(R) of all n × n matrices with real entries as a non-commutative ring. We noticed that R can
be replaced with Q or C, or even an arbitrary ring itself, and we obtain other rings of matrices.
We then defined various rings of functions.

Next, we proved that the additive inverse of a ring element is unique. A similar argument shows
that the additive identity is also unique.

We then stated a proposition: Given a ring R, for all a, b ∈ R, the following hold.

1. 0 · a = a · 0 = 0

2. (−a)b = a(−b) = −ab

3. (−a)(−b) = −ab

4. If R has a multiplicative identity, then it is unique, and −a = (−1)a

We proved one equality in each of (1) and (2), and the remainder are assigned as homework.
Next, we defined what it means for an element to be a zero divisor or a unit of a ring. The

set of all units in a ring R is denoted R×. We saw that the ring of integers Z has no zero divisors,
and its only units are ±1.

We turned to rings of functions, starting with all functions from [0, 1] to R. Think about what
functions are zero divisors in this ring, and which are units.
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