
Final Exam Conceptual Review

Math 791, Spring 2019

◦ The Final Exam is on Wednesday, May 15 from 7:30 - 10 am.
◦ The exam is cumulative, but will have a slight emphasis on the material covered since the

second midterm, which is focused on group theory. The Conceptual Reviews for Midterms 1
and 2 are available on the course website.

• Before Midterm 1, we covered material focused on rings: 0.3, 7.1−7.4, 7.5, and 9.1−9.3.
• Between Midterms 1 and 2, we covered material on polynomial rings and fields (with

some overlap in sections): 7.5, 9.1− 9.4, 13.1− 13.2, and 13.4.
• After Midterm 2, we studied groups: 1.1−1.6, 2.1−2.2, 2.4−2.5, 3.1−3.3, 4.5, and 5.2.

Consult me, or see the Daily Update, for the particular topics that we covered in each section.
◦ The best preparation is to practice, practice, practice working and re-working problems.

This includes book problems and quiz problems.
◦ Check out the Daily Update to check whether you understand all definitions and statements:

• For each definition, try constructing your own example and counterexample.
• For each statement, identify a realization of the result, and determine why each of its

hypotheses is necessary.

◦ Check out extended office hours that will be posted on the course website.

Basics on groups (1.1− 1.4, 1.6)

◦ Concepts: Group, inverse, identity, order of a group, order of an element in a group, group
homomorphism/isomorphism, fundamental examples: dihedral, symmetric, and matrix groups.
◦ Goals: Prove statements and make conclusions about groups with certain properties, or for

specific examples of groups. Construct homomorphisms and isomorphisms between groups.
◦ Problems: Homework : 1.1: #6, 7, 13, 14, 20, 21, 25; 1.6: #5, 17, 18; Investigation Module 2

1. Prove that if G is a group and x−1 = x for all x ∈ G, then G is abelian.
2. Show that any group of order at most 4 is abelian. Harder : Do the same for those of order 5.
3. If G is finite a group with even order, prove that x−1 = x for some x 6= 1 in G.
4. In a finite group, prove that every element has a finite order.
5. Show that if n is odd, then the only element x ∈ D2n such that xy = yx for all y ∈ D2n is

x = 1. On the other hand, if n is even, prove that there exists x 6= 1 with this property.

Subgroups (2.1− 2.3)

◦ Concepts: Subgroup, (finite) subgroup criterion, centralizer, normalizer, cyclic subgroup.
◦ Goals: Prove statements about subgroups. Determine whether a subset of a given group is a

subgroup. Compute a centralizer or normalizer.
◦ Problems: Homework : 2.1: #4–7; 2.2: #2, 6; 2.3: #6, 7

1. If G is abelian, prove that the set {x ∈ G | x2 = 1} is a subgroup of H. Exhibit an example
in which G is not abelian, and this set is not a subgroup.
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2. Prove the subgroup criterion.
3. If G is a group and x, a ∈ G, prove that CG(x−1ax) = x−1CG(a)x.

Cyclic groups (2.3)

◦ Concepts: Cyclic group, cyclic subgroup, generator of a cyclic group.
◦ Goals: Prove statements about cyclic groups and cyclic subgroups. Determine whether a given

group or subgroup is cyclic. Describe the distinct elements of a cyclic group. Classify the
subgroups of a cyclic group. Find all generators of a cyclic group. Apply the fact that any two
cyclic groups of the same order are isomorphic.
◦ Problems: Homework : 2.3: #2, 6, 7, 12–15

1. Prove that every subgroup of a cyclic group is cyclic.
2. Prove that if G is a group, and has no subgroups besides 1 and G, then G must be cyclic.

Harder : Show that in this case, G must also have prime order.

Normal subgroups and quotient groups (3.1)

◦ Concepts: Kernel of a group homomorphism, group of fibers of a group homomorphism,
left/right coset of a subgroup in a group, representative of a coset, conjugate of a subgroup
by a group element, normal subgroup, quotient group modulo a normal subgroup.
◦ Goals: Work with the group of fibers of a group homomorphism. Prove and apply properties

of group homomorphisms. Investigate the left or right cosets of a subgroup in a group. Prove
two cosets coincide or are not the same. Determine whether a subgroup is normal using various
criteria. Prove general properties about cosets, normal subgroups, and quotient groups. Work
in a quotient group modulo a normal subgroup.
◦ Problems: Homework : 3.1: #3, 14, 17, 20, 34, 35

1. If ϕ : G→ H is a surjective homomorphism and G is abelian, prove that H is also abelian.
2. In the setup of (1), prove that if N E G, then ϕ(N) E H.
3. Prove that if N,M are normal subgroups of a group G, then MN E G.
4. Prove that a quotient of a cyclic group modulo a normal subgroup is again cyclic.
5. If G is a group, N E G, and G/N is abelian, prove that aba−1b−1 ∈ N for all a, b ∈ G.

Lagrange’s theorem (3.2)

◦ Concepts: order of a group/subgroup, left/right coset of a subgroup in a group, index of
a subgroup in a group, Lagrange’s theorem, Cauchy’s theorem, preliminary version of Sylow’s
theorem, product of subgroups, any group of prime order is cyclic.
◦ Goals: Apply Lagrange’s theorem to make conclusions about the order of a subgroup, the

number of left cosets (i.e., the index) of a subgroup in a group, and the order of a quotient
group. Make conclusions about the orders of elements in a finite group.
◦ Problems: Homework : 3.2: #2, 8, 11, 16

1. If H is a subgroup of a group G and x, y ∈ G, assume that aH 6= bH. Must the right cosets
Ha and Hb also be distinct?
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2. Exhibit a bijection between the left cosets and right cosets of a subgroup in a group. (It is not
the obvious map gH ↔ Hg!)

3. For H ≤ G, if g ∈ G and m > 0 is smallest for which gm ∈ H, prove that m divides |g|.
4. Use Lagrange’s theorem to prove Fermat’s little theorem: If p is prime and p - a, then ap−1 ≡

1 mod p.
5. Exhibit an example of subgroups H, K of a group G for which HK is not a subgroup of G.
6. Prove that if H and K are subgroups of an abelian group, then HK is a subgroup of order

mn if and only if m and n are relatively prime.

The isomorphism theorems for groups (3.3)

◦ Concepts: The first, second/diamond, third and fourth/lattice isomorphism theorems for group,
lattice of subgroups of a group, correspondence between subgroups of a group and a quotient of
this group by a normal subgroup.
◦ Goals: Prove (parts of)the isomorphism theorems. Use the first isomorphism theorem to con-

struct isomorphisms between groups. Find the index of the kernel of a group homomorphism
from a group, in this group. Apply the second/diamond isomorphism theorem to compare quo-
tient groups. Use the third isomorphism theorem to understand a quotient of a quotient group.
Apply the fourth/lattice isomorphism theorem to understand the structure of and relationship
between the subgroups of a quotient group.
◦ Problems: Homework : 3.3: #1–4, 7

1. Let G be the group of real-valued functions on the unit interval [0, 1], under the operation of
function addition. If N = {f ∈ G | f(1/4) = 0}, prove that G/N is isomorphic to R.

2. If N = {−1, 1} ≤ R×, prove that R×/N is isomorphic to (R+, ·).
3. If G and H are groups, prove that N = {(g, 1) | g ∈ G} is a normal subgroup of G×H. Then

prove that N ∼= G, and (G×H)/N ∼= H.

Sylow’s theorem (4.5)

◦ Concepts: p-group/subgroup, Sylow p-subgroup, Sylow’s theorem, simple group.
◦ Goals: Apply Sylow’s theorem to understand the structure of finite groups. Determine the

number of Sylow p-subgroups of a group. Prove that a given group, or group with certain
properties, is simple or not simple. Characterize groups with a certain order.
◦ Problems: Homework : 4.5: #1, 4, 5, 13, 16, 30

1. If P is a Sylow p-subgroup of a finite group G, then P is also a Sylow p-subgroup of NG(P ),
and is the only Sylow p-subgroup of NG(P ).

2. Show that a group of order 108 has a normal subgroup of order 9 or 27.

The fundamental theorem of finite abelian groups (5.2)

◦ Concepts: Fundamental theorem of finite abelian groups.
◦ Goals: Determine/classify all isomorphism classes of finite abelian groups with a given order.

Study the subgroups of finite abelian groups.
◦ Problems: Homework : 5.2: #1, 4, 9

1. Suppose that G is a finite abelian group of order pn for a prime p. Prove that if a ∈ G has
maximal order among all elements of G, then g|a| = 1 for all g ∈ G.


