
Daily Update

Algebraic Topics in Computing: Cryptography

MATH 601, Spring 2020

If you �nd any typos in the Lecture Notes, please email me (witt@ku.edu). Many thanks!

Virtual Class Notes, Week 13 (April 29 - May 1).

1 Elliptic curve cryptography

After Lenstra's breakthrough idea of using elliptic curves to factor large integers, providing
a more e�ective attack on RSA and other cryptosystems than the other current algorithms,
many of which we've learned, mathematicians and computer scientists began to investigate
how elliptic curves can be applied to designing secure cryptosystems. This is our �nal week
of Virtual Class Notes, and we are bringing together the �old� and the �new� by learning
about cryptosystems that we are very familiar with (from before the �rst midterm!), shifted
to the setting of elliptic curves!

1.1 Elliptic curve discrete logarithm problem

Recall that the Di�e-Hellman key exchange and the ElGamal cryptosystem rely on the
di�culty of solving the discrete logarithm problem gx ≡ X mod p for x ∈ Z, where p
is prime and g,X integers not divisible by p (to ensure a solution, we can take g to be
a primitive root modulo p, but in each of these applications, a solution exists by design,
regardless). Translating this in the context of the multiplicative group of units (Z/pZ)×,
this is equivalent to �xing [g], [X] ∈ (Z/pZ)× and �nding an integer solution x to [g]x = [X]
in (Z/pZ)×.

Let's consider an analog of the discrete logarithm problem in an elliptic curve group E(p)
modulo a prime p. Instead of �xing integers g,X modulo p, let's �x points P,Q ∈ E(p).
In the traditional discrete logarithm problem, the goal is to determine how many times one
must multiply g by itself to obtain X modulo p (if possible), i.e., what power of g equals X:

g · g · · · g︸ ︷︷ ︸
x times

= gx ≡ X mod p.

In our elliptic curve group E(p), we use addition to represent the operation, so an analog
would be to ask how many times one mustadd P to itself in order to obtain Q (if possible),
i.e., what multiple of P equals Q:

P + P + · · ·+ P︸ ︷︷ ︸
m times

= nP = Q.
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De�nition 1.1 (Elliptic curve discrete logarithm problem). Given a prime p, �x points
P,Q on an elliptic curve E(p). Determine a positive integer n for which

nP = Q.

Remark 1.2. Note that, in analogy with the traditional discrete logarithm problem
where g is not necessarily a primitive root, it is possible that there is no solution to a
given elliptic curve discrete logarithm problem; i.e., there exist curves E(p) and points
P,Q on E(p) for which nP 6= Q for all integers n. However, we will see that in our
applications to cryptography, a solution will always exist, by design.

On the other hand, suppose that a solution n exists, i.e., nP = Q. Then if d is the
order of P on E(p), we know that dP = O, so (n+dk)P = nP +k(dP ) = nP +O = nP
for every integer k ≥ 0. Check that all solutions to the discrete logarithm problem have
the form n+ dk for some k ∈ Z!

Example 1.3 (Elliptic curve discrete logarithm problem). Let p = 97, and �x P =
(74, 13) and Q = (57, 23) on the elliptic curve E(97) given by

y2 ≡ x3 + 11x+ 76 mod 97.

The discrete logarithm problem nP = Q happens to have solution n = 39. (Check this
using your program for computing multiples of points on an elliptic curve modulo p!).

In fact, |E(97)| = 107, which is prime, so given any points P,Q on the curve above,
there is a solution to the discrete logarithm problem nP = Q: By Lagrange's theorem
4.2, the order of any non-identity element of E(97) must have order 107. If any two of
the elements

P, 2P, 3P, . . . , 107P = O

are equal, say kP = jP for some 1 ≤ k < j ≤ 107, then O = jP + (−kP ) = (j − k)P ,
and j − k < 107, contradicting the fact that the order of P is 107. Hence the list of
elements above makes up all elements of E(97), and hence one must be Q, so nP = Q
for some 1 ≤ n ≤ 107.

Now let p = 31, and consider the point P = (4, 17) on the curve E(31) given by

y2 ≡ x3 + 2x mod 31.

This curve has order 32 = 25 by Proposition 4.4. In fact, P has order 8, so only the points
Q = P, 2P, 3P, . . . , 8P = O have solutions to the discrete logarithm problem nP = Q.

1.2 Elliptic curve Di�e-Hellman key exchange

As the traditional Di�e-Hellman key exchange is designed based on the computational dif-
�culty of solving the discrete logarithm problem when the prime modulus p is very large,
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the elliptic curve version is relies on the di�culty of solving the elliptic curve version of this
problem.

Recall that in the original version of the key exchange, a large prime p and an integer g
relatively prime to p (which can be chosen to be a primitive root modulo p) are make public.
Two parties, Alice and Bob, want to agree on a shared integer-valued �secret key,� that they
can then use, e.g., as a tool to send encrypted messages to one another.

Alice chooses a private key x ∈ Z and passes X = gx % p to Bob, and in turn, Bob
chooses secret y ∈ Z and passes Y = gy % p over a public channel. Their shared key is
k = gxy % p, which Alice can �nd by taking Y x % p and Bob can compute as Xy % p, since

Y x ≡ (gy)x ≡ gxy ≡ (gx)y ≡ Xy mod p.

Notice how the elliptic-curve version of the Di�e-Hellman key exchange replaces powers
of g with multiples of a point P on an elliptic curve modulo a prime:

Method 1.4 (Elliptic curve Di�e-Hellman key exchange).

Goal : Alice and Bob agree on a shared private key.

Public keys :

• A (large) prime p,

• An elliptic curve E(p) modulo p, and

• A point P ∈ E(p).

Private keys :

• Alice chooses a secret integer n > 1.

• Bob chooses a secret integer m > 1.

Process :

1. Alice computes Q = nP and sends it to Bob across a public channel.

2. Bob computes R = mP and sends it to Alice across the public channel.

3. Alice computes nR.

4. Bob computes mQ.

3
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Outcome: The shared private point on E(p) is

nR = n(mP ) = (nm)P = m(nP ) = mQ,

and the x-coordinate of this point (nm)P is the shared secret key; i.e., k = x(nm)P .

Example 1.5 (Elliptic curve Di�e-Hellman key exchange). As in the �rst part of Ex-
ample 1.3, let p = 97, and P = (74, 13) on the elliptic curve E(97) given by

y2 ≡ x3 + 11x+ 76 mod 97.

Say Alice chooses the secret key n = 39, and Bob's secret key is m = 52. Alice computes

Q = nP = 39P = (57, 23)

(as mentioned in the noted example), and Bob computes

R = mP = 52P = (68, 54);

they send these values to one another over the public channel.

Then Alice can compute (nm)P as

nR = 39 · (68, 54) = (75, 27)

and Bob can �nd it by computing

mQ = 52 · (57, 23) = (75, 27).

Their points agree! The shared key is then its x-coordinate, 75.

Remark 1.6 (Security of the elliptic curve Di�e-Hellman key exchange). Notice that
if an eavesdropper �Eve� can determine n or m by solving either of the elliptic curve
discrete logarithm problems (see De�nition 1.1)

nP = Q or mP = R

on E(p), then she can determine the shared key.

Notice that, although Remark 1.2 shows that if d is the order of P on E(p), then
n′ = n + dk and m′ = m + dj are solutions to the above discrete logarithm problems,
respectively, if Eve is able to �nd one of these solutions and calculate

m′Q = (m+ dk)(nP ) = (nm)P + kn(dP ) = (nm)P

or similarly, n′R = (nm)P (check that this also holds!), then she has access to the
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shared secret key. Hence any solution to either elliptic curve discrete logarithms su�ces
to determine the shared key.

However, in general, it is very di�cult to solve the elliptic discrete logarithm problem.
The United States National Institute of Standards and Technology has endorsed elliptic
curve Di�e�Hellman as a recommended algorithm for key exchange in the National Se-
curity Agency's Cryptographic Modernization Program, to be used for both unclassi�ed,
and most classi�ed, information.

Remark 1.7 (Shortening the transmission). In fact, for e�ciency, Alice and Bob can
only send the x-coordinates of the points Q = nP and R = mP , respectively, to one
another: Suppose that Q = (xQ, yQ), and, for instance, Alice only sends Bob the x-
coordinate xQ of Q. Since Q is a multiple of P and E(p) is a group, the coordinates of
Q satisfy the elliptic curve equation, say y2 ≡ x3 + ax2 + b mod p, Bob can compute yQ
as one of the square roots of x3Q + ax2Q + b modulo p. E.g., remember that we derived
a formula to determine square roots modulo primes that are congruent to 3 modulo 4,
and in general, it is not too di�cult to �nd square roots modulo a prime. Moreover,
see Cipolla's algorithm for computations in general (note that unlike our method when
p ≡ 3 mod 4, this is not a formula!).

Hence Bob can �nd ±yQ, but cannot distinguish which is the actual y-coordinate of
Q. If he chooses the wrong one, −yQ, notice that (xQ,−yQ) = −Q, so he computes

m(xQ,−yQ) = m(−Q) = −mQ = −m(nP ) = −(mn)P = (xmnP ,−ymnP )

which has the same x-coordinate as mnP , the shared secret key!

Finally, we point out that if Bob only sends the x-coordinate of R = mP , then by
an analogous argument, Alice can determine the x-coordinate of mnP as well.

1.3 Elliptic curve ElGamal cryptosystem

Just as the original ElGamal Cryptosystem can be easily built using the Di�e-Hellman key
exchange; the same goes for the elliptic curve versions of these notions.

Suppose that Bob wants to send a secret message to Alice. The message is encoded as a
point M on an elliptic curve E(p) modulo p (see Remark 1.11 for more on this).

Method 1.8 (Elliptic curve ElGamal Cryptosystem).

Goal : Bob aims to send a secret message to Alice across a public channel.

Public keys :

• A (large) prime p,

• An elliptic curve E(p) modulo p, and
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• A point P ∈ E(p).

Private keys :

• Alice chooses a secret integer n > 1.

• Bob chooses a secret integer m > 1.

Process :

1. Bob translates his message into a point M on E(p), in some agreed-upon way.

2. Alice computes Q = nP and sends it to Bob across a public channel.

3. Bob computes

• R = mP , and

• S = M +mQ

and sends the pair (R, S) to Alice across the public channel.

4. Alice then computes the point S − nR = S + (−nR) on E(p).

Outcome: Alice has recovered the plaintext message M , since

S − nR = (M +mQ)− n(mP ) = (M +m(nP ))− n(mP ) = M.

Like the elliptic curve Di�e-Hellman key exchange, to intercept the messageM , it su�ces
to solve either elliptic curve discrete logarithm problem, Q = nP or R = mP .

Exercise 1.9. Think about how the elliptic curve ElGamal cryptosystem is analogous
to the original one, where our original operation of multiplication is replaced with the
addition law on the elliptic curve group!

Example 1.10 (Elliptic curve ElGamal cryptosystem). Again, as in Examples 1.4 and
1.5, let p = 97, and P = (74, 13) on the elliptic curve E(97) given by y2 ≡ x3 + 11x +
76 mod 97. Now suppose that Bob wants to send Alice a secret message, translated into
the point M = (7, 60) in some agreed-upon way.

Suppose that (as in our previous example of elliptic curve Di�e-Hellman), Alice
chooses the private key n = 39, and Bob chooses m = 52, so Alice computes Q = nP =
39P = (57, 23) and Bob computes R = mP = 52P = (68, 54).

Next, Bob computes

S = M +mQ = (7, 60) + 52(57, 23) = (7, 60) + (75, 27) = (81, 13)
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and sends the pair (R, S) = ((68, 54), (81, 13)) to Alice.

Then Alice �nds

S − nR = (81, 13)− 39(68, 54) = (81, 13)− (75, 27) = (81, 13) + (75, 70) = (7, 60)

recovering Bob's secret message M ! (Verify these computations using your functions for
addition and taking multiples of elliptic curves!)

Remark 1.11 (Turning a message into a point). Unfortunately, there is no �perfect�
way to translate a plaintext message (i.e., an integer) into a point on an elliptic curve
(e.g., that maximizes e�ciency). One way to attempt to do so would be to break the
message into �chunks� N less than p. We �rst hope to �nd a point whose x-coordinate
is N .

If the curve's equation is y2 ≡ x3 +ax+ b mod p, then for each chunk N , we compute
N3 + aN + b; if this is a square modulo p, let N ′ be one of its square roots. Then if Bob
translates this chunch of the message as the point (N,N ′) on E(p), Alice will �nd the
message as its x-coordinate. If N does not have a square root, then Bob can append
additional digits to the end of N until this new number has a square root modulo p,
sending this new point to Alice. When Alice deciphers this message, she will see extra
�nonsense� digits at the end of the the message, and will hopefully easily disregard them.

If this doesn't work (i.e., Bob has trouble �nding a square modulo p that is small
enough to feasibly transmit), he can break the message into smaller or larger chunks and
try the same procedure; in this case, there may be more �nonsense� digits at the end of
the ciphertext transmission.

Can you think of alternative ways to turn a given message (positive integer) into
point(s) on an elliptic curve modulo p?

Virtual Class Notes, Week 12 (April 20 - 24).

2 Lenstra's elliptic curve factoring algorithm

This week, we focus on applying the theory of elliptic curves to attack the security of cryp-
tosystems whose security are based on the di�culty of factoring large integers. Lenstra's
elliptic curve factoring algorithm is currently the best algorithm to �nd factors that have at
most 50 - 60 digits, so, for instance, it is the most e�cient algorithm for any factoring prob-
lem we have posed in this class! To factor general integers, it is still the third-best factoring
algorithm in existence.

We stress that this technique is modern, and currently used in practice. Hendrik Lenstra,
a Dutch mathematician (who is, even now, likely younger than some of your math or com-
puter science professors!) discovered this technique in 1987. This is even more striking since
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the mathematical foundations of the cryptosystems we study are very, very old, but there
are new and relevant applications of them. Moreover, the mathematics we've build together
in our course allows us to execute an in-depth study of these applications!

Lenstra's method is analogous, in many ways, to Pollard's p − 1 factoring method, and
so also to the p+ 1 method. However, there are several features that make Lenstra's method
more e�ective, and we will point these out as we describe the algorithm, and why it works.

2.1 The premise of Lenstra's method: Elliptic curves modulo n

Recall that thus far, when working with elliptic curve groups, we have deliberately only
worked over �elds, i.e., rings in which all nonzero elements have multiplicative inverses.
Why is this? Well, when we add two non-identity points P and Q on a curve, one must
compute the slope between them if P 6= Q, or the slope of the tangent line to P in the case
that P = Q (see the equations we've derived in each case, (3.6.1) and (3.7.1), respectively).
In either case, the slope is computed as a �fraction� M = r

s
. If the denominator s is zero,

then we think of this fraction as �in�nite,� so that the corresponding line is vertical (recall
that we are avoiding the degenerate case when both r and s are zero). On the other hand,
if s is nonzero, then we compute M as rs−1, which we can only do if s is a unit!

Hence, if we consider an elliptic curve over a ring that is not a �eld, we do not typically
have a well-de�ned addition law since some slopes necessary to add certain pairs of points
may not exist! For instance, consider solutions to the congruence

y2 ≡ x3 + 1 mod 15,

so that we are essentially working over the ring Z/15Z, which is not a �eld. We can check
that P = (0, 4) and Q = (5, 6) satisfy the above the equation. Toward computing their sum
using our current method, we try to compute the slope, modulo 15, as 6−4

5−0 ≡
2
5
. However,

we know that 5 has no inverse modulo 15, since it is not relatively prime to 15! There is no
way to interpret this �slope� as an integer modulo 15, or an element of Z/15Z.

Similarly, if we seek to double Q to �nd 2Q, we try starting to compute the slope of its
tangent line, modulo 15, as 3x2

2y

∣∣
(1,4)
≡ 3·25

12
≡ 5

12
, but again, we run into a similar problem,

since (12, 15) = 3 6= 1, so 12 also has no inverse modulo 15!

Note that though these problems can occur, sometimes it is possible to add some pairs
of points on curves �modulo n� for composite n: namely, when the denominator of the
slope required is a unit modulo n. As an exercise, check that 2P in our example above is
well-de�ned!

2.2 The algorithm

Lenstra's algorithm proceeds by attempting to �nd multiples of a point P on an elliptic
curve modulo a composite integer n. Like 2P = P +P (if it can be computed), for a positive
integer m, we de�ne mP (if it exists, which it de�nitely does if n is prime) as P added to
itself m times:

mP = P + P + · · ·+ P︸ ︷︷ ︸
m times

.
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There are choices to be make when one wants to compute a multiple of P . For instance,
to �nd 4P , one could �rst �nd 2P , and then double the result to obtain 2(2P ). On the
other hand, one could �nd 2P , then 3P = P + 2P , and then 4P = 3P + P . Notice that
the former method requires only two applications of the group law, and the latter requires
three (though when we analyze Lenstra's method, we see why the latter could sometimes be
advantageous).

Taking multiples, adding an element to itself a given number of times, is the analog to
exponentiation under the operation of multiplication: multiplying an element by itself a
given number of times. If desired, we can use an analog of �fast exponentiation��which we
might call �taking fast multiples��by using base 2 expansions: E.g., if we want to �nd 681P
for some point P , one can �nd that 681 = 1 + 23 + 25 + 27 + 29, so that

681P = P + 23P + 25P + 27P + 29P

One can �nd 2P, 22P = 4P, 23P = 8P, . . . , 29P by successively applying our doubling for-
mula, and then add using associativity.

Method 2.1 (Lenstra's elliptic curve factoring algorithm). Our goal is to �nd a proper
factor of a composite odd integer n.

We start by �xing a, b ∈ Z, and a solution P = (xP , yP ) to the equation

y2 ≡ x3 + ax+ b mod n.

Then start computing a sequence of multiples of P modulo n.

For instance, one can repeatedly double, starting with P :

P, 2P, 2(2P ) = 4P, 2(4P ) = 8P, . . . , 2(2k−1P ) = 2kP, . . . (2.1.1)

Alternatively, one can compute successive factorial multiplies of P :

P, 2P, 3(2P ) = 6P, 4(6P ) = 24P, . . . , k (((k − 1)!)P ) = (k!)P, . . . (2.1.2)

If at any step, the slope M = r
s
necessary to compute the next point in the sequence is

not well-de�ned modulo n, i.e., s has no multiplicative inverse modulo n.

Compute d = (n, s), which is greater than 1. If d 6= n, then d is a proper factor of n.

We will often refer to the point P above as the �starting point� of choice in Lenstra's
algorithm (there is a double meaning of �point� here!).

You may notice that, especially using (2.1.2), that Lenstra's algorithm has some sim-
ilarities with Pollard's p − 1 factoring algorithm, where after �xing some integer a, one
iteratively computes the least nonnegative residue of a to k! modulo the composite integer
n, for k = 1, 2, 3, . . . and �nds certain greatest common divisors. Here, we multiply, instead
of add, a by itself some number of times. One can think of Lenstra's method as an analog of

9
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Pollard's p− 1 method (or the p+ 1 method), where, in the background, the group (Z/pZ)×

(or Fp2 , respectively) is replaced with an elliptic curve group E(p).

In general, it is not necessary to follow one of the two processes of taking multiples as
above. For e�ciency, it is advantageous to use multiples kP where k is the products of small
integers, since �nding very large multiples of a point becomes more computationally taxing.

Question 2.2. How do we pick a (random) point on a (random) elliptic curve to start
with in Lenstra's algorithm?

One can �rst pick (random) integers xP , yP and a, and after setting b = (y2P − x3P −
axP ) % n, the desired equation

y2P ≡ x3P + axP + b mod n

holds. In fact, b is the only integer modulo n that will satisfy the above equation!

Example 2.3 (Repeated doubling in Lenstra's factoring algorithm). Take n = 899, and
�x the starting point P = (10, 11) on the curve

y2 ≡ x3 + 2x mod 899.

We proceed using the convention (2.1.1) in Lenstra's algorithm, repeatedly doubling
points. Using the doubling formula (3.7.1), we compute that

2P ≡ (109, 428) mod 889

4P ≡ 2(2P ) ≡ (194, 371) mod 889

8P ≡ 2(4P ) ≡ (806, 31) mod 889

However, to compute 16P = 2(8P ), we �nd that since dy
dx

= 3x2+2
2y

, the slope at 8P =

(806, 31) should be congruent to 3·8062+2
2·31 modulo n, which has denominator 2 · 31 ≡

62 mod 899. Using the Euclidean algorithm, we can �nd that (899, 62) = 31.doubling
Hence 31 is a proper factor of n = 899! Dividing out, we have that 899 = 29 · 31.

Example 2.4 (Lenstra's factoring algorithm using factorials). Take n = 517, and �x
the starting point P = (3, 6) on the curve

y2 ≡ x3 + 9 mod 517.

We proceed using the convention (2.1.2) in Lenstra's algorithm, �nding consecutive
factorial multiples of our starting point. Using equation (3.6.1) and (3.7.1), we compute

2P ≡ (96, 431) mod 517

6P ≡ 3(2P ) ≡ 2(2P ) + 2P ≡ (352, 129) + (96, 431) ≡ (227, 495) mod 517

10
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Now, to compute 24P = 4(6P ), we can proceed by computing 2(2(6P )), or, for instance,
3 ·(6P )+6P . Let's do the former. To �rst �nd 2(6P ), we attempt to �nd the slope of the
tangent line to 6P = (227, 495) at this point. Since dy

dx
= 3x2

2y
, at our point 3·2272

2·495 modulo
n, which has denominator 2 · 495 = 990 ≡ 473 mod 517. Using the Euclidean algorithm,
we �nd that (517, 473) = 11. Hence 11 is a proper factor of n = 517. Dividing out, we
have that 517 = 11 · 47.

Remark 2.5 (E�ectiveness of Lenstra's method). Suppose that P satis�es y2 ≡ x3 +
ax+ b mod n. Then it necessarily satis�es the same equation modulo p for every prime
factor p of n, i.e., modulo p, P in the corresponding elliptic curve group E(p).

Assume that we obtain the (not useful) factor d = n by attempting to compute
the multiple mP of P . Then n is a divisor of the denominator s of the slope M = r

s

between between (k− 1)P and P , or more generally, between kP and (m− k)P for any
1 ≤ k ≤ m − 1 (as usual, we mean the slope of the tangent line when the points are
equal). Hence every prime factor p of n is a factor of s, which means that in E(p), the
line between (m − 1)P and P (or kP and (m − k)P , respectively) is vertical, and the
sum of these two points is the identity O. (Note that it is possible that we are unlucky
and E(p) is singular, but if we cannot compute the slope of the tangent line at a point
on such a curve, its denominator is still 0 modulo p, i.e., a multiple of p.) Hence the
order of P in the group E(p) is m (notice that if it were smaller, our algorithm would
have terminated earlier.)

Hence, if Lenstra's algorithm results in the factor d = n after taking the multiple
mP , then m must by a multiple of the order of P on E(p) for every prime factor p of n!
Since the orders of elliptic curves modulo p vary and are in some sense �close to� (e.g.,
see Hasse's bound, Theorem 4.3), it is unlikely that this will happen.

For instance, consider Example 2.3, where we used repetitive doubling to attempt to
�nd a factor of n = 899. Why did we come across a proper factor? Well, we now know
that n = 29 ·31 By Proposition 4.4, since 31 ≡ 3 mod 4, the elliptic curve E(31) given by
our congruence y2 ≡ x3 + 2x mod 31 has order 32 = 25, so that by Lagrange's theorem
(Theorem 4.2) every non-identity point on E(31) has order 2, 22, 23, or 25. On the other
hand, it is a fact that |E(29)| = 26 = 2 · 13, so if a non-identity element on E(29) does
not have order 2, then it must have order 13 or 26. Therefore, in applying Lenstra's
algorithm by repeatedly doubling a point P that has order greater than 2 modulo 17,
i.e., computing 2kP for k = 2, 3, . . . modulo n, then we will arrive at the order of P
on E(31) before we come across the order of P on E(29), so we will obtain the proper
factor 31. Indeed, this is what happened; in fact, the order of P = (10, 11) on E(31) is
the highest possible value, 24 = 16!

In Example ??, where took factorial multiples of a point P on the curve y2 ≡ x3 +
3 mod 517 to factor n = 517 = 11 · 47, Proposition 4.4 tells us that since 11 ≡ 2 mod 3
and 47 ≡ 2 mod 3, |E(11)| = 12 = 22 · 3 and E|(47)| = 48 = 24 · 3. Since 12 | 4!, we
know that we will obtain a factor in at most 4 steps, and we did!

11
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Notice that by the above discussion, if for all prime divisors p of n, our starting point
P has order that is not a multiple of 2, then successive doubling will never yield a factor;
the algorithm will not terminate! Hence, though the factorial method is slower (we must
do more than simply applying the doubling formula repeatedly), in general it is more
likely to be successful.

Question 2.6. If we apply Lenstra's algorithm, and it fails to produce a proper factor
of n, must we move on to an alternative factoring method?

There are a few ways that this can happen, and two of these are described in Remark
2.5: The algorithm produces the factor d = n, which is not helpful, or the algorithm
cannot terminate. Alternatively, we could continue the process of computing multiples
of a point for some time, and the algorithm has not reached a point where a factor
is produced; perhaps we have used signi�cant computational time/power. This might
appear similar to the previous scenario.

One of the features of Lenstra's algorithm that makes it so amazingly e�ective is that
in any of these cases, one can simply choose a di�erent point on a di�erent curve and
re-start the algorithm!

Virtual Class Notes, Week 11 (April 13 - 17).

Recall that to put a group structure on an elliptic curve, we needed to add an extra point
O �at in�nity.� Before we start to go into more depth on elliptic curve groups, we make a
few more re�nements to our current de�nition.

3 A revised de�nition of an elliptic curve group

To start, we will only work over �elds F in which 2 6= 0 and 3 6= 0 in F , where 2 denotes
the element 1 + 1, and 3 is 1 + 1 + 1. This means that, among the �elds that we've used in
this class, we will avoid Z/2Z and Z/3Z, as well as F4 and F9. On the other hand, the �elds
Z/pZ and Fp2 are OK if p ≥ 5, as are R, Q, and C. In our immediate discussion, we will
point out instances where we are using the fact that 2, 3 6= 0 in our base �eld F .

3.1 Singular curves

Next, we observe that there is a gap in our current de�nition of the elliptic curve group law!
Recall that if a line is tangent to a point P on an elliptic curve, and passes through another
point R, then 2P = −R in the group�we consider P to have multiplicity 2, so P +P +R = O
(see the third and fourth graphs in Figure 6.5.1�in the latter, R = O). This allows us to add
any point P on an elliptic curve to itself, i.e., compute 2P , using its tangent line�unless the
tangent line does not exist! This happens if and only if we cannot de�ne the slope of the
elliptic curve at P , that is, the curve is not di�erentiable at P .

12
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Notice that if an elliptic curve is given by y2 = f(x), then implicit di�erentiation allows

us to �nd that 2y dy
dx

= f ′(x). If y 6= 0. the derivative necessarily exists and equals dy
dx

= f ′(x)
2y

(note that f is di�erentiable everywhere since it is a polynomial, and that we are also using
our assumption that 2 6= 0 in F here in dividing by 2!). However, if y = 0, two things can

happen. Recall from calculus that if f ′(x) 6= 0, then we can think of the formula f ′(x)
2y

as
being �in�nite�; more precisely, as y → 0, the fraction approaches ±∞. The fourth graph in
Figure 6.5.1 illustrates an example where y = 0 and the tangent line to the point intersecting
the elliptic curve has �in�nite� slope, meaning that it is vertical.

The �nal case is when both y = 0 and f ′(x) = 0, in which case the fraction f ′(x)
2y

has

the form 0
0
, and the derivative dy

dx
does not exist. In this case, we have not de�ned the point

P +P = 2P , since there is no tangent line to the elliptic curve at P . Therefore, we have not
given a well-de�ned addition law on elliptic curves with this property, which we call singular :

De�nition 3.1. We call an elliptic curve singular if it has a point where the derivative
dy
dx

does not exist (and is not in�nite); otherwise, it is nonsingular, or smooth.

Our next goal is the understand when an elliptic curve is singular, so that we can quickly
and easily identify the smooth cases in which our group law makes sense. We will apply the
following fact, and use the following de�nition:

Remark 3.2. Given a polynomial g(x) with coe�cients in a �eld F , an element a ∈ F is
a root of g(x) if and only if g(x) = (x−a)h(x) for some polynomial h(x) with coe�cients
in F .

De�nition 3.3. Fix a polynomial g(x) with coe�cients in a �eld F , and an element
a ∈ F . We say that g(x) has an n-th root at x = a if g(x) = (x − a)nh(x) for some
polynomial h(x) with coe�cients in F . We often say g(x) has a double root at x = a
if n = 2, and a triple root if n = 3.

In particular, notice that a polynomial with a triple root at x = a also has a double root
there.

The following lemma gets us closer to giving a simple characterization of when when
an elliptic curve is singular. Notice that although the limit de�nition of a derivative does
not make sense over an arbitrary �eld (e.g., think about Z/pZ), we can still formally de�ne
derivatives of polynomial using the power rule d

dx
xn = nxn−1 for n ≥ 0. Note that in this

setting of polynomials, the product and chain rules follow from this.

Lemma 3.4. Let g(x) be a polynomial over a �eld F , with root a ∈ F . Then g(x) has
a double root at x = a if and only if x = a is also a root of the derivative g′(x).

13
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Proof. Suppose that m is the maximal number of factors x − a in g(x), so that g(x) =
(x− a)mh(x), where m ≥ 1 and h(a) 6= 0. Then by the product rule,

g′(x) = m(x− a)m−1h(x) + (x− a)mh′(x).

First assume that g(x) has a double root at x− a, so that m ≥ 2. Then m− 1 ≥ 1 and
0m = 0m−1 = 0, so g′(a) = m · 0m−1 · h(a) + 0m · h′(x) = 0. On the other hand, if m = 1,
then g(x) = (x−a)h(x), so g′(x) = h(x)+(x−a)h′(x), and g′(a) = h(a)+(a−a)·h′(x) =
h(a) 6= 0 by our assumption on h(x).

Since the derivative dy
dx

at a point on an elliptic curve (x0, y0) does not exist if and only if
y0 = 0 and f ′(x0) = 0, after applying Lemma 3.4, we have proved the following proposition!

Proposition 3.5. An elliptic curve y2 = f(x) is singular if and only if it contains a
point P = (x0, 0) such that x0 is a double root of f(x).

From now on, we will only consider elliptic curve groups over curves that are
nonsingular, so that the group law is well-de�ned.

3.2 Shifting to simplify the elliptic curve equation

Our �nal alteration is out of convenience, not necessity. Notice that if we shift an elliptic
curve y2 = f(x) horizontally, to the right by σ, we get another one, y2 = f(x − σ). This
new elliptic curve has the same shape as the original one (just shifted), and a line passes
through three points on the original curve if and only if a line (with shifted x-coordinates)
passes through the corresponding points on the other. Hence the group structures on the
two curves are the same, at least after renaming the points.

We use this fact to simplify our equation for an elliptic curve. Recall that up until this
point, we considered curves of the form y2 = f(x), where f(x) = x3 + ax2 + bx + c and
a, b, c ∈ F . Under our assumption that 3 6= 0 in F , a/3 (i.e., a ·3−1) is a well-de�ned element
of F . Notice that if we shift the curve to the right by a/3, we obtain the curve

y2 = f
(
x− a

3

)
=
(
x− a

3

)3
+ a

(
x− a

3

)2
+ b
(
x− a

3

)
+ c

=

(
x3 − 3x2 · a

3
+ 3x · a

2

9
− a3

27

)
+ a

(
x2 − 2ax

3
+
a2

9

)
+ bx− ab

3
+ c

= x3 +

(
b− a2

3

)
x+

(
2a3

27
− ab

3
+ c

)
In particular, the the coe�cient of x2 is zero! Hence, since we are concerned with the group
structure of an elliptic curve, we can restrict ourselves to studying equations of the form
y2 = f(x), where f(x) is a monic cubic polynomial in x whose coe�cient of x2 is zero.
Notice that in our revised de�nition, we reuse �a� and �b� to mean coe�cients of di�erent
terms than in our original de�nition.

We now �nalize our de�nition of an elliptic curve group.

14
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De�nition 3.6 (Elliptic curve group). Fix a �eld F for which 2, 3 6= 0, and elements
a, b, c ∈ F for which

y2 = x3 + ax+ b

is nonsingular. Let E denote all points (x, y) satisfying the above equation, along with
a point O. Then (E,+) is a group under the following axioms:

1. The identity is O, so that P +O = P = O + P for all P ∈ E.

2. Given P = (xP , yP ) ∈ E, its inverse is −P = (xP ,−yP ).

3. Given P = (xP , yP ), Q = (xQ, yQ) ∈ E for which xP 6= xQ,

P +Q = −R

where R = (xR, yR) is the point on the line L through P and Q, which is considered
to be the tangent line to P if P = Q, with coordinates

xR = M2 − xP − xQ and yR = M(xR − xP ) + yP (3.6.1)

where M is the slope of L.

Note that we found the coordinates of R using our derivation (6.3.3), but now with the
coe�cient of x2 in f(x), previously called �a,� set to 0 in our new notation.

Soon, we will often want to double points on elliptic curves. Applying Q = P to (3.6.1)
so that M = dy

dx
|P , we obtain the following formula:

Method 3.7 (Doubling formula for points on elliptic curves). If P = (xP , yP ) is a point
on an elliptic curve, let M = dy

dx

∣∣
P
. Then by (3.6.1), 2P = −R, where R = (xR, yR),

where xR = M2 − 2xP and yR = M · (xR − xP ) + yP . Hence 2P = −R = (x2P , y2P ),
where

x2P = M2 − 2xP and y2P = M(xP − x2P )− yP (3.7.1)

Whenever we want to use the group law on an elliptic curve, we need to know that the
curve is not singular, i.e., the right-hand side of the equation doesn't have a double or triple
root. A useful tool to do this is the discriminant.

Given a quadratic (rather than cubic, our focus here) polynomial ax2 + bx+ c in variable
x, you might recall that its discriminate is the value b2 − 4ac. Notice that the roots of
a quadratic equation over the real numbers (which can be complex), −b±

√
b2−4ac
2a

, coincide
and equal − b

2a
if and only if its discriminant is 0. Hence the vanishing of the discriminant

characterizes whether the polynomial has a double root. Notice that, up to a unit, the
discriminant is the square of the di�erence of its roots.

If a monic cubic equation has roots x1, x2, and x3, then its discriminant is (a constant
multiple of) the polynomial ((x1 − x2)(x1 − x3)(x2 − x3))2. The square ensures that there is
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no sign ambiguity, and it is clear that this number vanishes if and only if one term in the
product equals 0�the cubic has a double (or triple) root. As a (tedious) exercise, you can
check, by expanding and setting coe�cients equal, that using our equational conventions,
the value above is (a constant multiple of) the expression in the description below:

Remark 3.8 (Discriminant of an elliptic curve). Given elements a, b in a �eld F for
which 2, 3 6= 0, the discriminant of x3 + ax+ b is

∆ = 4a3 + 27b2.

Moreover, ∆ = 0 if and only if the elliptic curve y2 = x3 + ax + b is singular, i.e., the
right-hand side has a double or triple root.

Notice that if we were working over a �eld where 2 = 0 or 3 = 0, the vanishing of the
discriminant would simply be equivalent to the vanishing of b, or of a, respectively.

−2 2 4

−4

−2

2

4

y2 = x3

x

y

−2 2 4

−4

−2

2

4

y2 = x3 − 3
4
x+ 1

4

x

y

Figure 3.8.1: Some singular elliptic curves over R

Example 3.9 (Singular elliptic curves). Notice that in both graphs appearing in Figure
3.8.1, there is a point where the curve is not smooth. For y2 = x3, there is a cusp at
the origin, and for y2 = x3 − 3

4
x + 1

4
, there is a point where the tangent line is not

well-de�ned�it looks as if there are �two� possible tangent lines there. Indeed, x3 has a

triple root at x− 0, and x3 − 3
4
x+ 1

4
= (x+ 1)

(
x− 1

2

)2
has a double root at x = 1

2
.

We can also verify that these curves are singular via the discriminant: For the �rst
curve, a = b = 0, so ∆ = 0 + 0 = 0. For the second, a = −3/4 and b = 1/4, so
∆ = 4 · (−3/4)3 + 27 · (1/4)2 = −33/42 + 33/42 = 0 as well. On the other hand, Example
6.7 with equation y2 = x3 +1 has a = 0 and b = 1, and appears smooth. Its discriminant
is 27 = 33, which is nonzero as an element of R (and also in all other �elds where 3 6= 0).

In fact, we can remove the point on a singular elliptic curve whose derivative does not
exist (think about why there can only be one!), and use the remaining points to de�ne a
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Figure 3.9.1: Elliptic curves over R as a, b vary

group law. However, the groups obtained in these cases can be �degenerate,� and have the
same structure as some well-understood groups. As speci�ed in our �nal de�nition above,
we will stick to the nonsingular case when discussing elliptic curve groups.

Indeed, the graphs of nonsingular elliptic curves over the real numbers appear smooth.
Check out Figure 3.9.1, which illustrates how elliptic curves can change as the coe�cients
change; notice the singular case a = b = 0 that also appeared in Figure 3.8.1.

4 Elliptic curves modulo a prime

Since cryptography is a discrete science requiring �nite data, our applications will involve
elliptic curves over �nite �elds. Our focus is when the base �eld F is Z/pZ, where p is
a prime and p 6= 2, 3. These elliptic curves are often denoted E(p) to clarify the prime,
and besides in�nite point O, points on E(p) can be considered as coordinate pairs (x, y) of
integers modulo p satisfying an equation of the form

y2 ≡ x3 + ax+ b mod p

where a and b are �xed integers. We often refer to an elliptic curve E(p) as an elliptic
curve modulo p.

Consider the familiar curve y2 = x3 + 1, which we determined in Example 3.9 is nonde-
generate over any �eld we consider. The point P = (2, 2) is in the elliptic curve group E(5)
de�ned by this curve over Z/5Z since 4 ≡ 8 + 1 mod 5.

17
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To get oriented with calculations on E(5), let's begin to �nd multiples of P . We �rst
�nd that dy

dx
≡ 3x2

2y
, which at P = (2, 2) equals 12

4
≡ 2

4
mod 5, and since 4−1 ≡ 4 mod 5, this

equals 2 · 4 ≡ 3 mod 5. Now applying the doubling formula (3.7.1) The x-coordinate of 2P
is 32 − 2 · 2 ≡ 0 mod 5, and the y-coordinate is 3(2− 0)− 2 = 4. Then 2P = (0, 4).

Now, let's �nd 3P = P + 2P . The slope between P = (2, 2) and 2P = (0, 4) is 4−2
0−2 ≡

2
3
≡

2 ·2 = 4 mod 5. The addition formula (3.6.1) yields x3P ≡ 42−xP −x2P ≡ x2P = 1−2−0 ≡
4 mod 5 and y3P = 4(xP − x3P ) − yP = 4(2 − 4) − 2 ≡ 0 mod 5. Hence 3P = (4, 0). Try
�nding 4P by writing this as P + 3P , and then as 2 · (2P ), and verifying that you get the
same answer!

It is useful to extend our de�nition of the order of units in Z/pZ to elements of an
arbitrary group (though not every element of a group has a well-de�ned order).

De�nition 4.1. The order of an element a in a group G, if is the smallest positive
integer n, if it exists, for which an = e, or if the operation is addition,

na = a+ a+ · · ·+ a︸ ︷︷ ︸
n times

= e.

If no such n ≥ 1 satisfying this condition exists, the order of a is not de�ned.

The order of a group G, denoted |G|, is the number of elements in the group. In
particular, the order of an in�nite group is in�nity.

The order of i in the group C× = C r {0} is 4 since i2 = −1, i3 = i2 · i = −i, and
i4 = (i2)2 = (−1)2 = 1. The order of 2 in Z (with operation addition) does not exist,
because n · 2 6= 0 for all n ≥ 1. The orders of both groups, C and R, are in�nity.

The order of a point P on an elliptic curve is the smallest integer n ≥ 1 for which nP = O.
For instance, our work just before De�nition 4.1 shows that the order of P = (2, 2) on E(5)
is at least 4, since none of P, 2P, 3P equal O.

Suppose that G is a �nite group under multiplication, and |G| = n. Then for a ∈ G, two
of the n+ 1 elements

g0 = 1, g, g2, . . . , gn

must coincide. Suppose that gi = gj for 0 ≤ j < i ≤ n. Then gi−j = gi(gj)−1 = gj(gj)−1 = 1.
Hence every element of a �nite group has a well-de�ned order.

The orders of elements of a �nite group, and of the group, are related. Recall that we used
a specialized version of Lagrange's theorem to study the termination of the p + 1 factoring
algorithm; here is a more general statement.

Theorem 4.2 (Lagrange's theorem). The order of an element in a �nite group divides
the order of the group.

Recall that we have already proved Lagrange's theorem for (Z/pZ)×, showing that the
order of any element a must be a divisor of p − 1. The general proof is analogous to our
proof in this special case.
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There are at most p2+1 points on an elliptic curve group modulo p, as there are p choices
each for the x- and y- coordinates of a point, and we also have the identity O in the group.
In particular, for any curve and any prime p, |T (p)| ≤ p2 + 1 <∞.

How can we determine the number of points on E(p)? For instance, can we �nd the order
of E(5) without actually checking whether all 5 · 5 = 25 possible pairs satisfy the congruent
equation y2 ≡ x3 + 1 mod 5? Consider the table below:

x % 5 0 1 2 3 4

x3 % 5 0 1 3 2 4
(x3 + 1) % 5 1 2 4 3 0

In particular, all least nonnegative residues of integers modulo 5 appear exactly once in the
third row! The only squares modulo 5 are 02 ≡ 0, 12 ≡ 42 ≡ 1, and 22 ≡ 32 ≡ 4. Since
we are looking for solutions y2 ≡ x3 + 1, only x-values for which the third rows are squares
modulo 5 can contribute points. Each will contribute two points, the square roots modulo
the 5, unless the value is 0, which only has one square root, 0, modulo 5.

x % 5 0 1 2 3 4

x3 % 5 0 1 3 2 4
(x3 + 1) % 5 1 2 4 3 0

y % 5 ±1 ±2 0

We conclude that the points (x, y) on the curve are the following:

(0, 1), (0, 4), (2, 2), (2, 3), (4, 0), O.

Adding the identity O, the order of E(5) is 6.

In contrast, there are 12 points on the elliptic E(7) given by the same congruence equa-
tion, i.e., y2 ≡ x3 + 1 mod 7. The elements are, in general, di�erent: (2, 2) is on E(5) but
not on E(7), and vice versa for (2, 4).

In general, it can be di�cult to determine the number of points on an elliptic curve.
Though we do not have all the tools to prove it, the following bound on the order of elliptic
curves, due to Hasse, can be very useful:

Theorem 4.3 (Hasse's bound). Given an elliptic curve E(p) modulo p, its order satis-
�es:

p− 2
√
p+ 1 ≤ |E(p)| ≤ p+ 2

√
p+ 1

Let's apply Hasse's bound to the curve E(5) that we've been working with. Since 2·
√

5 ≈
4.8, we have that 5 + 2

√
5 + 1 ≈ 10.5 and 5− 2

√
5 + 1 ≈ 1.5. Since the order is an integer,

2 ≤ |T (5)| ≤ 10, a pretty broad range. Recall that we determined that in our case, |T (5)| = 6.

Notice that Hasse's bound does not depend on the �eld elements a, b that de�ne the
elliptic curve congruence y2 ≡ x3 +ax+b mod p, and it cannot precisely determine the order
of the elliptic curve group. In some cases, after focusing on elliptic curves modulo p with
speci�c formulas, we can determine the exact order of an elliptic curve modulo p.
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Proposition 4.4. Fix a prime p and an elliptic curve E(p) modulo p satisfying one of
the following conditions:

(1) p ≡ 2 mod 3, and E(p) is de�ned by the equation y2 ≡ x3 + b mod p, where p - b.

(2) p ≡ 3 mod 4, and E(p) is de�ned by the equation y2 ≡ x3 + ax mod p, where p - a.

Then |E(p)| = p+ 1.

Notice that in both cases, the elliptic curves are nonsingular: For (1), the discriminant
equals 27b2, which is nonzero modulo p since p 6= 3 and b 6≡ 0 mod p. The discriminant for
(2) is 4a2, which is again nonzero modulo p since p 6= 2 and a 6≡ 0 mod p.

Please refer to Propositions 48 and 49 in Savin for the proofs of these statements. They
are quite interesting, and rely on properties of squares modulo primes! Notice that our
example y2 ≡ x3 + 1 satis�es (1) in Proposition 4.4, and |E(5)| satis�es the conclusion,
|E(5)| = 5 + 1 = 6. In fact, our logic above, in counting points on E(5), extends to a general
proof of (1) for E(p) of the given form. The proof of (2) is broken into two cases, based on
whether −b is a square modulo p.

Virtual Class Notes, Week 10 (April 6 - 10).

5 The quadratic sieve factoring algorithm

Along with Pollard's p− 1 factoring algorithm and the p+ 1 factoring algorithm, we present
another factoring algorithm called the quadratic sieve method. The quadratic sieve factoring
algorithm relies on the fact that if an integer has a square root modulo a composite odd
integer n, then the Chinese remainder theorem guarantees that it has at least two pairs of
square roots. (E.g., think about our application of this fact when ��ipping coins over the
telephone.�) In other words, it is possible that a 6≡ ±b mod n, but a2 ≡ b2 mod n. Each step
of the proof of the following lemma is likely familiar to you at this point:

Lemma 5.1. Given a composite integer n, suppose that a and b are integers such that
a 6≡ b mod n and a 6≡ −b mod n, but

a2 ≡ b2 mod n.

Then (a− b, n) and (a+ b, n) are proper factors of n.
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Proof. Since a2 ≡ b2 mod n, we know that n is a divisor of a2 − b2 = (a − b)(a + b).
However, n - (a−b) and n - (a+b); otherwise a ≡ b mod n or a ≡ −b mod n, respectively.
Then at least one prime factor of n divides a− b, and a di�erent one must divide a+ b,
so n is not relatively prime to a− b nor a+ b. Moreover, neither (n, a− b) nor (n, a+ b)
equals n since n is not a divisor of a − b nor a + b, so both of these greatest common
divisors are proper factors of n.

We can apply Lemma 5.1 to factor a composite integer n, as long as we can �nd two
integers whose squares are congruent modulo n, but they are not congruent, nor negatives
of one another, modulo n. For instance, it is clear that a = 4 is a solution to

x2 ≡ 16 mod 45,

but b = 14 is also a solution since 142 = 196 ≡ 16 mod 45. Hence 42 ≡ 142 mod 45, so that
45 divides b2 − a2 = 142 − 42 = (14 − 4)(14 + 4) = 10 · 18. We �nd that (45, 10) = 5 and
(45, 18) = 9, which, indeed, are proper factors of 45!

The concept just described can be applied to factor a composite integer; before describing
this algorithm, consider the following observation about squares and prime factorizations.
As an exercise, justify it.

Remark 5.2 (Unique factorization of squares). Given an integer x, suppose that its
prime factorization is pe11 p

e2
2 · · · pett , where the pi are distinct primes, and the ei are

nonnegative integers. Then n is a square if and only if all the ei are even.

Now we are ready to introduce a factoring algorithm relying on the principles discussed
thus far.

Method 5.3 (Quadratic sieve factoring algorithm.). Our goal is to �nd a proper factor
of a composite odd integer n. Let m denote the smallest integer greater than

√
n. Start

computing

x0 = m2 % n

x1 = (m+ 1)2 % n

x2 = (m+ 2)2 % n

...

xk = (m+ k)2 % n

...

and at each step, �nd the prime factorization of xk. Continue until one of the following
conditions holds:

(1) All exponents in the prime factorization of xk are even, so that xk = X2 for some
integer X. In this case, let Y = (m+ k)2.
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(2) All exponents in the prime factorization of some product of the xi computed so far
are all even; i.e., this product equals X2 for some integer X. In this case, let Y
denote the product of the m+ i for which xi is in this original product.

In either case, compute (X − Y, n) and (X + Y, n) of n via the Euclidean algorithm. If
not 1 nor n, each is a proper factor of n.

Notice that if m is the smallest integer greater than
√
n, then m2 will be larger than

n, but not by much. Hence its least nonnegative residue should be fairly small, so that
its prime factors should not be very large, and �nding its prime factorization should not
be computationally di�cult. Similarly, its should be possible to factor the �rst few of
(m + 1) % n, (m + 2) % n, . . . We hope that the algorithm terminates in relatively few
steps, giving a proper factor of n.

Example 5.4 (Quadratic sieve, Case 1). Consider n = 4183. Since 64 <
√
n < 65, we

have that m = 65. We begin �nding xk for k = 0, 1, 2, . . ., and at each step, �nding its
prime factorization:

x0 ≡ 652 ≡ 4225 ≡ 42 mod 4183 42 = 2 · 3 · 7
x1 ≡ 662 ≡ 4356 ≡ 173 mod 4183 173 is prime

x2 ≡ 672 ≡ 4489 ≡ 306 mod 4183 306 = 2 · 32 · 17

x3 ≡ 682 ≡ 4624 ≡ 441 mod 4183 441 = 32 · 72

Since 441 = (3 · 7)2 = 212, we have that 682 ≡ 212 mod 4183. Since 68 − 21 = 47 and
68 + 21 = 89, we use the Euclidean algorithm to �nd their greatest common divisors
with n; (47, 4183) = 47 and (89, 4183) = 89. Both are proper factors of n. In fact, you
can check that both are prime, and n = 47 · 89.

Example 5.5 (Quadratic sieve, Case 2). Let n = 4033, so that 63 <
√
n < 64, we have

that m = 64. Again, we begin �nding xk for k = 0, 1, 2, . . ., and at each step, �nding its
prime factorization:

x0 ≡ 642 ≡ 4096 ≡ 63 mod 4033 63 = 32 · 7

x1 ≡ 652 ≡ 4225 ≡ 192 mod 4033 192 = 26 · 3
x2 ≡ 662 ≡ 4356 ≡ 323 mod 4033 323 = 17 · 19

x3 ≡ 672 ≡ 4489 ≡ 456 mod 4033 456 = 23 · 3 · 19

x4 ≡ 682 ≡ 4624 ≡ 591 mod 4033 591 = 3 · 197

x5 ≡ 692 ≡ 4761 ≡ 728 mod 4033 728 = 23 · 7 · 13

x6 ≡ 702 ≡ 4900 ≡ 867 mod 4033 867 = 3 · 172

Though none of the least nonnegative residues is a square (i.e., has only even powers of
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primes), we see that the product

x1 · x6 = (26 · 3)(3 · 172) = 26 · 32 · 172 = (23 · 3 · 17)2 = 4082

is a square! Since x1·x6 = 65·70 = 4550, so that 4550−408 = 4142 and 4550+408 = 4958.
We �nd that (4142, 4033) = 109 and (4985, 4033) = 37 are proper factors of n! You can
check that each factor we found is prime, and their product is n.

6 Introduction to elliptic curves.

Now, we transition to a completely new topic, studying the solutions to certain polynomial
equations. In fact, the points satisfying these equations form a group (after a small modi�-
cation), and like the groups of units of Z/pZ and the circle group T (p), for p prime, these
groups can be applied to cryptography in interesting and powerful ways. In fact, some of the
more recent cryptosystems in use rely on the group structure of a so-called elliptic curve.

Recall that a �eld is a commutative ring in which all nonzero elements are units; Q,R,C
are �elds, as are Z/pZ and Fp2 , for p prime.

Preliminary de�nition 6.1 (Elliptic curve). Given a �eld F and a, b, c ∈ F , an elliptic
curve E over F is the set of all points (x, y) satisfying

y2 = x3 + ax2 + bx+ c.

Example 6.2 (Elliptic curve). Let E denote the elliptic curve over R given by

y2 = x3 + 1.

Since y2 ≥ 0, we have that x3 +1 ≥ 0 for all points (x, y) on E, so x3 ≥ −1, i.e., x ≥ −1.

The graph is symmetric about the x-axis since (−y)2 = x3 + 1; i.e., if (x, y) ∈ E,
then (x,−y) ∈ E as well. The points with positive y-coordinates make up a �positive
branch,� and those with negative y-coordinate form the �negative branch.�

Moreover, implicitly di�erentiating the equation, we �nd that 2y dy
dx

= 3x2, so dy
dx

=
3x2

2y
. This derivative be thought of as in�nite if the denominator vanishes, i.e., y = 0, in

which case 0 = 02 = x3 + 1, so x = −1. We see that the tangent line to (−1, 0) is indeed
vertical. We also notice that if y ≥ 0, then dy

dx
≥ 0, i.e., the positive branch is increasing,

and if if y ≤ 0, then dy
dx
≤ 0, so the negative branch is decreasing (which would also come

for free from the symmetry we've noticed).

In fact, the graph has the following shape; as an exercise, try �nding its in�ection
points!
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The group law of an elliptic curve relies on the fact that a line L typically intersects
an elliptic curve E at exactly three points (but not always). To show this let's �x
the following conventions for our immediate discussion:

Setup 6.3. Let E be the elliptic curve over a �eld F given by

y2 = f(x), where f(x) = x3 + ax2 + bx+ c.

Let P = (x1, y1) and Q = (x2, y2) be points on the intersection of E with a line L.

Notice that �most� lines are not vertical (e.g., zero is only one of many possibly slopes
for a line among all possible values). Let's �rst address this exceptional case.

Assume that L is vertical, so that x1 = x2 = γ for some γ ∈ F . Then L has the simple
equation x = γ, and any point on E ∩ L satis�es

y2 = f(γ) = γ3 + aγ2 + bγ + c.

Notice that f(γ) ∈ F , so that there are only two possible y-values of points on E∩L, ±
√
f(x).

These must be the y-coordinates of P and Q. Hence in this case, after possibly renaming
the points, the only points on E ∩ L are P and Q, and they have the form P = (γ, f(γ))
and Q = (γ,−f(γ)). Moreover, if f(γ) = 0, then P = Q. We have discovered the following.

Case 1 (L vertical). Suppose that L is vertical and P = (x1, y1) lies on E ∩ L. Then

(a) If y1 6= 0, there are exactly two points on E ∩ L, P and Q = (x1,−y1).
(b) If y1 = 0, P = Q, so that there is only one point P = (x1, 0) on E ∩ L.

Now assume that L is not vertical; i.e., x1 6= x2. Then the slope of L equals

M =
y2 − y1
x2 − x1
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•

•

An example of Case 1(a)

•

An example of Case 1(b)

where this quotient denotes (y2 − y1) · (x2 − x1)−1 in the �eld F . (Note that we will con-
tinue to use fractional notation to mean the product of a numerator with the inverse of a
denominator.)

In this case, let B denote the y-intercept of the L (which exists since L is not vertical),
so that L has equation y = Mx + B. Then these points (x, y) in the intersection of E ∩ L
are those that satisfy

(Mx+B)2 = y2 = f(x) = x3 + ax2 + bx+ c,

and since the left-hand side of this equation equals M2x2 + 2MBx + B2, these points are
those whose x-coordinates satisfy

x3 + (a−M2)x2 + (b− 2MB)x+ (c−B2) = 0. (6.3.1)

Let h(x) denote the left-hand side of (6.3.1), so that the points in E ∩L are those whose
x-coordinate satis�es h(x) = 0. Since P,Q ∈ E ∩ L, x1 and x2 must both be roots of h(x).
Since x1 6= x2, this means that (x − x1)(x − x2) is a factor of h(x). Applying polynomial
long division to �nd the quotient of h(x) by this factor, the result must be x− x3 for some
x3 ∈ F , since h(x) is a monic (its leading coe�cient equals 1) cubic. Then

h(x) = (x− x1)(x− x2)(x− x3) (6.3.2)

and x3 is a root of h(x), so x3 is the x-coordinate of a point R = (x3, y3) in E ∩ L. In fact,
there can only be one such point, else the line passing through them would be vertical.

The coe�cient of x2 in a monic cubic polynomial is the negative of the sum of its zeros
(check this!). By (6.3.1), this coe�cient for h(x) equals a −M2, while the corresponding
sum is x1 + x2 + x3 by (6.3.2). Therefore, a−M2 = −(x1 + x2 + x3), and

x3 = M2 − a− x1 − x2.

Since L passes through x1 and x3 and has slope M , y3−y1
x3−x1

= M , and

y3 = M(x3 − x1) + y1 = M(M2 − a− 2x1 − x2) + y1.
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We conclude that if L is not vertical, then

R =(x3, y3), where

x3 = M2 − a− x1 − x2 (6.3.3)

y3 = M(x3 − x1) + y1 = M(M2 − a− 2x1 − x2) + y1.

lies on E ∩ L, and no other points besides P and Q lie on this intersection. We summarize
our conclusions:

Case 2 (L not vertical). Suppose that L is not vertical and P 6= Q lie on E∩L. Then
so does R as de�ned in (6.3.3), and no other points are in the intersection. Hence

(a) If R is distinct from P and Q, then exactly three points, P,Q, and R, lie on E∩L.
(b) If R = P or R = Q, then exactly two points lie on E ∩ L, namely P and Q.

•

•

•

An example of Case 2(a),
the typical case.

• •

An example of Case 2(b)

In fact, Case 2(a) is the �typical� case, meaning that for most lines intersecting an
elliptic curve, they intersect the curve at exactly three points. We've already see that Case
1 is a special one, and Case 2(b) actually only occurs if L happens to be tangent to P . Let's
formalize what happens in the two cases if L is tangent to E.

Lemma 6.4. Suppose that the line L is tangent the elliptic curve E at the point P =
(x1, y1). If L is vertical, then P is on the only point on E ∩L. Otherwise, the only other

point on E ∩ L is R as de�ned in (6.3.3), but with x2 = x1 and M = dy
dx

∣∣
P

= f ′(x1)
2y1

.

Proof. In assuming that L is tangent to E at P , notice that it is necessarily the case
that either dy

dx
exists at P , or that the tangent line is vertical.

Implicitly di�erentiating the formula y2 = f(x) for E, we �nd 2y dy
dx

= f ′(x). Hence
dy
dx

∣∣
P

= f ′(x1)
2y1

unless y1 = 0, in which case the tangent line is vertical. If L is vertical,
then we know from Case 1 above that P is the only point on E ∩ L.

If L is not vertical, i.e., y1 6= 0, then take another point Q = (x2, y2) on E ∩L. Then
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if R = (x3, y3) is the point on E that intersects the line through P and Q, its coordinates
satisfy (6.3.3).

Consider what happens when Q approaches P . In this case, x2 → x1 and y2 → y1,
and the slope between P and Q approaches the slope of the tangent line, dy

dx

∣∣
P
. Hence as

Q → P , i.e., L approaches the tangent line to P , R approaches the point as in (6.3.3),
but with x2 replaced with x1 and M replaced with D = dy

dx

∣∣
P
. More speci�cally,

lim
Q→P

x3 = lim
Q→P

(
M2 − a− x1 − x2

)
= D2 − a− 2x1

lim
Q→P

y3 = lim
Q→P

(
M(M2 − a− 2x1 − x2) + y1

)
= D2

(
D2 − a− 3x1 − x2

)
+ y1.

Hence these are the coordinates of the other point on E ∩ L.

Finally, we can de�ne a group law on the elliptic curve E, assuming that at each point
of E, either dy

dx
exists, or dy

dx
is in�nite, i.e., the tangent line is vertical. The group relies on

the fact that a line usually intersects an elliptic curve at three points; however, we have seen
that there are exceptions to this statement. To rectify this, we add a �point at in�nity� to
the group, which serves as the identity of the group. We use addition as the operation on
an elliptic curve group, so we call this extra point �O.'

From now on, we will always include the point O in our elliptic curves, so that they have
this underlying group structure.

Preliminary de�nition 6.5 (Elliptic curve group). Given a �eld F and elements
a, b, c ∈ F , consider the set E of all points (x, y) satisfying y2 = x3 + ax2 + bx + c,
along with the point at in�nity, denoted �O.� Then (E,+) forms a group under the
following axioms:

1. The in�nite point O is the identity.

2. The inverse (negative) of a point P = (x, y) in E is −P = (x,−y).

3. If a line intersects points P,Q, and R in E, then

P +Q+R = O,

so P +Q = −R.
4. If a line is tangent to P , then we consider the point to have multiplicity greater

than 1 on the line. If there is another point R on this line, then P is considered to
have multiplicity 2 and

P + P +R = 2P +R = O,
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so 2P = −R, and the formula (6.3.3) will con�rm this. If there is no other point
on the line, then the computation, and P has multiplicity 3 on the line so that

P + P + P = 3P = O

and 2P = −P , and the formula (6.3.3) will con�rm this. .

5. If a line is vertical, we consider the in�nite point O to be on the line. Hence if
points P,Q in E are on the line, then P +Q+O = O, so P = −Q.

The following graphs illustrate features of the group law:

• P

• −P

−P is the re�ection
of P about the x-axis.

•
P

• Q

• R

• −R

P +Q = −R

•P • R

• −R

2P = −R

•P

2P = O
and −P = P

Figure 6.5.1: Examples illustrating the elliptic curve group structure

Remark 6.6. It is possible that

Hint: If you �nd that a line is tangent to some point S on the elliptic curve, and
there are no other points on the intersection of the curve with the tangent line, then S is
considered to have multiplicity 3 on E, i.e., S + S + S = 3S = O. To verify this, either
use the addition formula applies to S +S, and you should �nd that S +S = −S, or you
can plug the equation for the tangent line into the elliptic curve equation, an check that
the x-coordinate is triple root of the resulting cubic equation.

Example 6.7 (Elliptic curve group law). Consider the elliptic curve group (E,+) built
from Example 6.2, where

E = {(x, y) ∈ R2 | y2 = x3 + 1} ∪ {O}.

Then P = (−1, 0) and Q = (0, 1) satisfy the equation above. Then −Q = (0,−1).
Moreover, P +Q+R = O, where R is the other point on E and the line passing through
P and Q; this line has slope M = 1−0

0−(−1) = 1. Using (6.3.3), since M = 1 and a = 0, we
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�nd that R = (12 − (−1), 1 · (12 − 2(−1))) = (2, 3). Since O is the identity, we conclude
that P +Q = −R = (2,−3).

−2 2 4
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−2
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4

y2 = x3 + 1

•
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• Q

• R

• −R

x
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Virtual Class Notes, Week 9 (March 30 - April 3).

Finding methods for factoring large integers is fundamental to attacks on certain cryp-
tosystems. For example, in order to break the RSA cryptosystem, one must factor the public
modulus into its two prime factors.

This week we study two algorithms that push primality testing further, by not only
determining that a given integer n is composite, but by �nding a proper factor k > 0,
meaning k 6= 1 and k 6= n. Then we can divide n by k to �nd another proper factor j, for
which n = kj. If n only has two prime factors (like in RSA), we've found them!

For a general composite integer n, though, k and j may not be prime, but we can
determine whether each is prime using the Miller-Rabin test. If they are both prime, then
we have obtained the prime factorization of n. If not, we can then apply the factoring
algorithm to whichever are not prime to attempt to factor further. Repeating this process,
we may be able to determine the prime factorization of any composite integer n.

For instance, if we apply a factoring algorithm to n = 3819, and �nd that 57 is a factor.
Dividing out, we �nd that n = 57 · 67. We can then apply the factoring algorithm to 57 and
67; suppose we �nd that 57 = 3 · 19, but the algorithm fails to �nd a factor of 67. Hence
3819 = 3 · 19 · 67, and we can easily check that each of these factors is prime.

7 Pollard's p− 1 factoring algorithm

Our �rst factoring method is called Pollard's p − 1 factoring algorithm. Suppose that we
want to factor an integer n > 1. If the algorithm succeeds, this method is pretty e�cient in
�nding a factor of n in the case that n has at least one prime factor p for which the prime
factorization of p−1 consists of small primes. For example, the integer n = 15 023 factors as
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83 · 181. Notice that 83− 1 = 82 = 2 · 41, so its prime factorization has a fairly large prime
41. However, 181− 1 = 182 = 22 · 32 · 5, so all its factors are small primes.

In fact, suppose that n has a prime factor p, and B is a positive integer for which
(p − 1)|B!, where B! is the product B · (B − 1) · · · 3 · 2 · 1. If Pollard's p − 1 method �nds
the factor p of n, or a multiple of it, then it �nds one in at most B steps. In our example of
n = 15 023 above, since p = 181 is a prime factor of n and p − 1 = 182 = 2·32 · 5, we �nd
that p− 1 divides

6! = 6 · 5 · 4 · 3 · 2 · 1 = (3 · 2) · 5 · (2 · 2) · 3 · 2 · 1 = 24 · 32 · 5

(but notice that (p− 1) - 5!), so Pollard's p− 1 method will take at most B = 6 steps to �nd
the factor 181 if it does so.

Let's see how the algorithm runs:

Method 7.1 (Pollard's p − 1 factoring algorithm). Our goal is to �nd a proper factor
of a composite integer n. Choose an integer a, 1 < a < n. If n and a are not relatively
prime, then (a, n) is a proper factor of n. Otherwise, successively compute the following:

a2 % n, where a2 = a2

a3 % n, where a3 = a32 = (a2)3 = a2·3

a4 % n, where a4 = a43 = (a2·3)4 = a2·3·4

...

ak % n, where ak = akk−1 = (a2·3···(k−1))k = ak!

...

At each step, compute (ak − 1, n), and continue until (ak − 1, n) 6= 1. If this greatest
common divisor is not n, then it is a proper factor of n. If (ak − 1, n) = n, then the
algorithm fails, and one can start the algorithm again with another value of a.

In the algorithm, it is preferable to choose a to be a fairly small integer, so that the
computations are more e�cient.

Example 7.2 (Pollard's p−1 factoring algorithm). Let's use our example of n = 15 023
from above, and choose a = 2. Then we start by computing

a2 ≡ 22 ≡ 4 mod 15 032 and compute (3, 15 032) = 1

a3 ≡ a32 ≡ 43 ≡ 64 mod 15 032 and compute (63, 15 032) = 1

a4 ≡ a43 ≡ 644 ≡ 11 548 mod 15 032 and compute (11 547, 15 032) = 1

a5 ≡ a54 ≡ 11 5485 ≡ 5924 mod 15 032 and compute (5923, 15 032) = 1

a6 ≡ a65 ≡ 59246 ≡ 5431 mod 15 032 and compute (5430, 15 032) = 181

Hence we found the factor 181 of n, and dividing out, we can �nd n = 181 · 83. As an
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exercise, apply the Miller-Rabin test to show that each of these factors is prime!

Remark 7.3 (E�ciency of Pollard's p − 1 factoring algorithm.). Suppose that p is a
prime factor of n, and (p− 1) | B!. Then if (a, n) = 1, we know that (a, p) = 1, so that
by Fermat's little theorem, ap−1 ≡ 1 mod p. Now, B! = (p − 1)k for some integer k, so
aB ≡ aB! ≡ (ap−1)k ≡ 1 mod p. Therefore, p | (aB − 1), so (aB − 1, n) is a multiple of p.
If it is a multiple besides n, we have found a proper factor!

Remember that in our example of n = 15 023 with prime factor p = 181 of n, we
computed earlier that p− 1 is a divisor of 6! but not 7!, and so that since the algorithm
found the factor p, it must have been found in at most 6 steps; recall that the method
took all six! The only other proper factor of n is the prime q = 83, q − 1 = 82 = 2 · 41.
Here, q − 1 is a divisor of 41! but not of 40!, so the algorithm would take at most 41
steps to �nd the factor 83, if it does. (Thankfully, we didn't need to do this.)

Why did we actually obtain a proper factor of n = 15 023 in our example? Recall
that n has prime factorization 181 · 83, and since 180 | 6!, a6 ≡ a6! ≡ 1 mod 181, so that
181 | (a6 − 1, n). Then (a6 − 1, n) = 181 if and only if 83 - (a6 − 1, n), or a6! 6≡ 1 mod 83.

Let's consider whether this is the case. If a is not a unit modulo 83 (i.e., a is a multiple
of 83), then am 6≡ 1 mod 83 for every integer m. If a is a unit modulo 83, then the order of
a modulo 83 is a divisor of 82 = 2 · 41, so is either 2, 41, or 82. Since 2 | 6! but 41 - 6! and
82 - 6!, we have that a6! ≡ 1 mod 83 exactly if the order of a modulo 83 equals 2. Hence we
obtain the proper factor 181 if the order of a modulo 83 is not 2. We chose a = 2, whose
order is in fact 83!

8 The p+ 1 factoring algorithm

Now we turn to another factoring algorithm that is a type of analog of Pollard's p − 1
algorithm, called the p + 1 factoring algorithm. Notice that in Pollard's method, once we
check that (a, n) = 1, then all powers of a are units modulo n, so all our computations are
equivalent to working in the group of units 〈Z/n/Z〉×.

In the p + 1 algorithm, we perform a similar process, but work in a new group called a
circle group. If you're familiar with the complex numbers, the circle subgroup of this group
consists of all complex numbers of norm 1, which trace out the unit circle in the complex
plane (which is where the nomenclature comes from).

Recall that a �eld is a commutative ring with at least two elements, in which every
nonzero element is a unit. We know that if p is prime, Z/pZ is a �eld with p elements. In
fact, there are other �elds that have �nitely many elements. We will work in the group of
units of a �eld with p2 elements, where p is prime.

The �nite �eld Fp2. Fix a prime p, and an integer d that is not a square modulo p.
Then the ring Fp2 can be de�ned as the set of elements of the form

a+ b
√
d
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where a, b are integers, and (
√
d)2 = d. Two elements a+b

√
d, a′+b′

√
d ∈ Fp2 are equal if

and only if a ≡ a′ mod p and b ≡ b′ mod p. Notice that there is a unique representation
of each element Fp2 as a+ b

√
d, where 0 ≤ a, b < p, so Fp2 contains exactly p

2 elements.

Addition and multiplication are de�ned as you might expect:

(a+ b
√
d) + (a′ + b′

√
d) = (a+ a′) + (b+ b′)

√
d

(a+ b
√
d) · (a′ + b′

√
d) = aa′ + ab′

√
d+ a′b

√
d+ bb′d = (aa′ + bb′d) + (ab′ + a′b)

√
d

It is apparent from these formulas that both addition and multiplication are commu-
tative, and it is straightforward to check that that both are associative. This ring has
additive identity 0 = 0 + 0

√
d and multiplicative identity 1 = 1 + 0

√
d.

Given an element z = a + b
√
d of Fp2 , its imaginary part is Im(z) = b, and its

conjugate is de�ned as z = a − b
√
d, so that Im(z) = −b and z = z. If z is nonzero,

its multiplicative inverse is z
a2−b2d =

(
a

a2−b2d

)
−
(

b
a2−b2d

)√
d, which follows from the fact

that
z · z = (a+ b

√
d)(a− b

√
d) = a2 − b2d.

Notice that z · z can be thought of as an element of Z/pZ.

Though it appears that the �eld Fp2 depends on the choice of d, any �eld as de�ned above
has the same ring structure after renaming the elements; we say that they are isomorphic.

The circle group T (p). The circle group is the subgroup of the group of units F∗p2 =

Fp2r{0} consisting of all elements z = a+b
√
d of F∗p2 for which z ·z = a2−b2d ≡ 1 mod p.

In fact, the circle group has p + 1 elements, in the p + 1 factoring algorithm, this group
can be thought of as taking the role of the group of units (Z/pZ)× (which has p−1 elements)
in Pollard's p− 1 factoring algorithm.

Example. Take p = 5. Notice that since 02 = 0, 12 = 1, 22 = 4, 32 ≡ 4 mod 5, and
42 ≡ 1 mod 5, we know that d = 2 is not a square modulo 5. Then F52 = F25 consists of
the 25 elements a+ b

√
2, where 0 ≤ a, b ≤ 4.

If z = 3 + 4
√

2, then its imaginary part is Im(z) = 4, and its conjugate is z =
3− 4

√
2 = 3 + 1

√
2 = 3 +

√
2. If w = 2 + 3

√
2, then

z + w = (3 + 4
√

2) + (2 + 3
√

2) = 5 + 7
√

2 = 5 + 2
√

2

zw = (3 + 4
√

2)(2 + 3
√

2) = 6 + 9
√

2 + 8
√

2 + 12 · 2 = 30 + 17
√

2 = 0 + 2
√

2 = 2
√

2

The circle group T (5) consists of the nonzero elements z = a+ b
√

2 of F25 for which
z · z = a2 − 2b2 ≡ 1 mod p. The multiplicative identity 1 = 1 + 0

√
2 is clearly in this

group, and so is −1. A more interesting element is, for instance, 2 + 2
√

2 ∈ T (5) since
(2 + 2

√
2)(2 − 2

√
2) = 4 − 2 · 4 = −4 = 1 since −4 ≡ 1 mod 5. The circle group has
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p+ 1 = 6 total elements�try �nding the others!

In what follows, we use analogous de�nitions to those in the de�nition of Fp2 . Given

integers a, b, and d, z = a + b
√
d is a complex (and perhaps real) number, Im(z) = b, and

z = a− b
√
d. Given an integer n > 1, we write z % n, to mean the number a′+ b′

√
d, where

a′ = a % n and b′ = b % n.

The p + 1 factoring algorithm. Our goal is to �nd a proper factor of a composite
integer n. Fix integers a, b, and d, and let z = a + b

√
d. If 1 < (z · z, n) < n, then this

greatest common divisor is a proper factor of n.

Otherwise, successively compute the following:

z2 % n, where z2 = z2

z3 % n, where z3 = z32 = (z2)3 = z2·3

z4 % n, where z4 = z43 = (z2·3)4 = z2·3·4

...

zk % n, where zk = zkk−1 = (z2·3···(k−1))k = zk!

...

At each step, compute (Im(zk), n), and continue until (Im(zk), n) 6= 1. If this greatest
common divisor is not n, then it is a proper factor of n. If (Im(zk), n) = n, then the
algorithm fails, and one can start the algorithm again with another value of z.

Notice how this is analogous to Pollard's p− 1 method! In fact, if n has a prime factor p
such that the prime factorization of p+ 1 consists of small primes, then the p+ 1 algorithm
is fairly e�cient. To prove the following proposition that shows this, we need to apply the
following variant of Lagrange's theorem: Suppose that x is an element of a �nite group G
under multiplication. If G has m elements, then xm = 1 in G. When G = (Z/pZ)×, which
has p− 1 elements, we see that this is precisely Fermat's little thoerem!

Proposition. Suppose that n is a composite integer with prime factor p, and �x an
integer B for which (p+ 1) | B!. Suppose that in the p+ 1 algorithm, d is not a square
modulo p, and a and b are not both zero modulo p. Then the algorithm terminates
(either �nds a proper factor of n, or fails by �nding the factor n) in at most B steps.

Proof. Given integers a, b, and d that is not a square modulo p, notice that as an element
of Fp2 , z = a+ b

√
d is nonzero. Consider the element w = z · z−1. As an exercise, check

that w = z · z−1. Then
w · w = (z · z−1)(z · z−1) = 1

so w is in the circle group T (p). Since T (p) has p+ 1 elements, the version of Lagrange's
theorem stated above implies that wp+1 = 1 in T (p). Since (p + 1) | B!, we then have
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that wB! = 1 as well; i.e.,

(z · (z)−1)B! = zB! · (z)−B! = 1,

forcing zB! = (z)−B!, which you can check equals zB!. Since an element of Fp2 equals its
conjugate exactly if its imaginary part is zero, we conclude that Im

(
zB!
)
≡ 0 mod p.

This means that p | Im(zB), and since p is also a divisor of n, p | (Im(zB), n), so
(Im(zB), n) is a factor of n.

Notice that since before applying the p+ 1 algorithm, we do not know the prime factors
p of n, so we cannot necessarily choose an integer d that is not a square modulo such a factor
p. However, recall that in determining the formula for square roots modulo primes p such
that p ≡ 3 mod 4, we proved that −1 is never a square modulo such a prime. Hence, if n
has any prime factor congruent to 3 modulo 4, then the algorithm will �nd a multiple of this
factor using d = −1. In this case, we often use i to denote the element

√
−1 of Fp2 .

In general, for a randomly chosen d, there is a 1
2
chance that d is not a square modulo

any prime factor p of d, so by running the algorithm multiple times, we should �nd a d for
which the algorithm terminates fairly quickly.

Example (p + 1 factoring algorithm). Consider n = 851. Let's choose d = −1,
and z = 1 + 2i, where i =

√
−1. We �rst �nd z · z = 12 − 22 · −1 = 5, and �nd that

(5, 851) = 1. Then we proceed as follows:

z2 ≡ (1 + 2i)2 ≡ −3 + 4i mod 851 and compute (4, 851) = 1

z3 ≡ (−3 + 4i)3 ≡ 117 + 44i mod 851 and compute (44, 851) = 1

z4 ≡ (117 + 44i)4 ≡ 32 125 393 + 242 017 776i

≡ 143 + 184i mod 851 and compute (184, 851) = 23

We have found the factor 23 of n, and dividing out, n = 23 · 37!

Note that p = 23 was a factor of n in this exercise, and since p ≡ 3 mod 4 and p + 1 =
24 = 23 · 3, which divides 4!, the algorithm was guaranteed to terminate in at most 4 steps.

Virtual Class Notes, Week 8 (March 23 - 27).

9 The Miller-Rabin primality test

Recall that before Spring Break, we stated the Miller-Rabin primality test. This test, when
conclusive, allows one to conclude that a given integer n is composite.
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Method 9.1 (Miller-Rabin primality test). Take an odd integer n ≥ 3, so that n− 1 is
even. Factor out the highest power of 2 as possible from n − 1, writing n − 1 = 2k · q,
where q is odd. (Note that k and q are unique!)

Then n is composite if for some �xed a ∈ Z, 1 < a < n, the following properties hold:

1. aq 6≡ 1 mod n, and

2. a2
iq 6≡ −1 mod n for all i = 0, 1, . . . , k − 1.

Proof. Assume that p = n is prime. We need to show that one of the conditions must
fail, so either (1) aq ≡ 1 mod p, or (2) one of the following must be true:

aq ≡ −1, a2q ≡ −1, a2
2q ≡ −1, · · · , or a2k−1q ≡ −1 mod p. (?)

Now, a2
k−1q is a square root of 1 modulo p, since

(a2
k−1q)2 ≡ a2

kq ≡ an−1 ≡ ap−1 ≡ 1 mod p

by Fermat's little theorem.

We know (e.g., you proved it on Midterm 1!) that the only square roots modulo a
prime are ±1. If a2

k−1q ≡ −1 mod p, then the last congruence in (?) holds. Otherwise,
we know that a2

k−1q ≡ 1 mod p. In this case, a2
k−2q is a square root of 1 modulo p, so

a2
k−2q ≡ −1 mod p or a2

k−2q ≡ 1 mod p. In the �rst case, the second-to-last equation in
(?) holds, and in the second case, a2

k−3q is a square root of 1 modulo p!

Hence we can continue in this manner (e.g., formally, by induction), to conclude that
if none of a2

k−1q, a2
k−2q, · · · , a2q are congruent to −1 modulo p, then then they are all

congruent to 1, and aq is a square root of 1 modulo p. In this case, aq ≡ −1 mod p or
aq ≡ 1 mod p, so that either the �rst equation in (?) holds, or the original condition (1)
holds!

Example 9.2 (Miller-Rabin primality test). Let's apply the Miller-Rabin test to n =
713, which doesn't have any obvious small factors. Since n − 1 = 712 = 23 · 89 and 89
is odd, we have k = 3 and q = 89 in the statement of the test. Let's try the smallest
permissible a value, a = 2. We compute, using fast exponentiation (which we omit):

aq ≡ 289 ≡ 140 6≡ ±1 mod 713

a2q ≡ 22·89 ≡ (289)2 ≡ 1402 ≡ 19 600 ≡ 349 6≡ −1 mod 713

a2
2q ≡ 222·89 ≡ (22·89)2 ≡ 3492 ≡ 121 801 ≡ 591 6≡ −1 mod 713

Since k− 1 = 2, these are the only values we need to compute to conclude that n = 713
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is composite! (In fact, 713 = 23 · 31.)

Recall that n = 561 is a Carmichael number; it is composite and a561 ≡ a mod 561 for
every integer a. Hence it is not possible to show 561 is composite by exhibiting a case in
which the conclusion of Fermat's little theorem fails. However, the Miller-Rabin test does
show 561 is composite! Try doing this yourself, and then check your work in Savin text,
where this example is worked out (page 149).

In fact, if n is composite, more than 75% of choices for a, 1 < a < n, in the Miller-Rabin
test are witnesses for the compositeness of n! Hence if we start by trying a = 2, 3, . . . (which
are the easiest to apply to the test, since they are small), we are likely to soon come across a
value that works. On the other hand, this means that if n is actually prime, the Miller-Rabin
test can tell us that it is likely that n is prime: For instance, if we pick 5 random values for
a and the Miller-Rabin test is inconclusive, then since (1/4)10 = 1/1024 < .001, there is a
99.9% chance that n is prime. Moreover, if we check more than 1

4
of values for a in the range

1 < a < n and the test is inconclusive, then we can conclude that n is prime!

10 The parity of solutions to the discrete logarithm problem

The idea behind the Miller-Rabin primality test�that the only square roots of 1 modulo a
prime are ±1�actually helps us determine the parity of solutions (i.e., whether they are even
or odd) to the discrete logarithm problem!

Notice that if p is an odd prime, then p− 1 is even, so (p− 1)/2 is a positive integer.

Theorem 10.1 (Parity of solution to discrete logarithm problem). Fix an odd prime p,
a primitive root g modulo p, and a unit X modulo p. If an integer x0 is a solution to
the discrete logarithm problem

gx ≡ X mod p,

then

• x0 is even if and only if X
p−1
2 ≡ 1 mod p, and

• x0 is odd if and only if X
p−1
2 ≡ −1 mod p.

Proof. First notice that since g is a primitive root modulo p, gp−1 ≡ 1 mod p, but
gt 6≡ 1 mod p for 0 < t < p− 1. Using this, we calculate:

• If x is even, so x = 2k for some integer k,

X
p−1
2 ≡ (gx)

p−1
2 ≡ (g2k)

p−1
2 ≡ gk(p−1) ≡ (gp−1)k ≡ 1k ≡ 1 mod p.
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• If x is odd, so x = 2k + 1 for some integer k,

X
p−1
2 ≡ (gx)

p−1
2 ≡ (g2k+1)

p−1
2 ≡ gk(p−1)+

p−1
2 ≡ (gp−1)k · g

p−1
2 ≡ g

p−1
2 6≡ 1 mod p.

Finally, notice that since Xp−1 ≡ 1 mod p by Fermat's little theorem, X
p−1
2 is a square

root of 1 modulo p, so it must be 1 or −1 modulo p.

Example 10.2 (Finding the parity of a discrete logarithm solution). In fact, g = 75 is
a primitive root modulo the prime p = 101. Suppose we are interested in the discrete
logarithm problem

75x ≡ 40 mod 101.

Is a solution x0 odd or even?

Using the theorem above, taking X = 40, since (p− 1)/2 = 50, we calculate

X(p−1)/2 ≡ 4050 ≡ 4032 · 4016 · 402 ≡ 79 · 68 · 85 ≡ 100 ≡ −1 mod 101

Hence any solution x0 is odd! In fact, using the Baby-step, giant-step method for solving
discrete logarithms, we can verify that the solution 1 < x0 < 101 is x0 = 31.

It makes sense that if a solution x0 to the discrete logarithm problem gx ≡ X mod p is
odd (or even, respectively), then all solutions are odd (even): Since g has order p−1, if x0 is
one solution, then all solutions have the form x0 + k(p− 1), where k is any integer. (Check
this!)

Thursday, March 5. Today we recalled from last time that composite integers n > 1
with the property that an ≡ a mod n for all a ∈ Z are called Carmichael numbers (or
�Fermat pseudoprime�), and that 561 as 3 · 11 · 17 is the smallest one. We proved that 561 is
a Carmichael number using the facts that (1) factors into a product of distinct primes, and
(2) for each prime factor p = 3, 11, 17, p− 1 is a divisor of 560 = 561− 1.

We listed a few of the next Carmichael numbers, and noted that there are in�nitely many
Carmichael numbers with any number of prime factors. In all our examples, all of the prime
factors have multiplicity one.

These observations led us to state the following criterion for determining whether a given
number is a Carmichael number:

Korselt's criterion for Carmichael numbers: A composite integer n > 1 is a Carmichael
number if and only if the following hold:

1. n is squarefree (m2 - n for all m > 1, or equivalently, p2 - n for all primes p).
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2. If p is prime and p | n, then (p− 1) | (n− 1).

We proved that Korselt's criterion is valid; an interesting feature is that chose special
integers a, and used the fact that an ≡ a mod n to deduce (1) and (2): a is chosen to be
prime for (1), and a is chosen to be a primitive root modulo a prime factor of n for p.

The upshot of our discussion is that although if we can �nd a ∈ Z for which an 6≡ a mod n,
we can deduce that n > 2 is composite, such an a doesn't always exist for composite n.

Fortunately, we can re�ne this idea, and use our theory of square roots modulo primes,
to obtain a much more e�ective primality test! We noticed that if p is an odd prime, then
a(p−1)/2 must be ±1 modulo p since it is a square root of ap−1 ≡ 1 mod p. This idea goes
into the following test for determining that a given number is composite:

Miller-Rabin primality test: Take n > 2 odd, and factor out as many 2s as possible
from the even number n − 1, writing n − 1 = 2k · q for k ≥ 1 and odd q. If for some
integer a, 1 < a < n, the following hold, then n must be composite:

1. aq 6≡ 1 mod n, and

2. a2
iq 6≡ −1 mod n for all i = 0, 1, . . . , k − 1.

Finally, we returned Midterm 1.

Tuesday, March 3. Today, we took Midterm 1.

Thursday, February 27. We started class by reviewing the baby-step, giant step method
for solving the discrete logarithm problem, and noticed that if there is a solution, then a
solution can be found in at most 2m steps, where m = d

√
p− 1e steps! We went through an

example.

Next, we discussed digital signatures, and described the process for RSA digital signitures.
In the same setup as the RSA cryptosystem (same public and private keys), if Bob wants
Alice to sign a message x ∈ Z, then Alice computes y = xd % n, her signed document. Bob
can then verify that it was indeed Alice who signed (since only Alice knows the decryption
exponent d), but �nding yd % n, which, if Alice actually signed it, will be congruent to
xed ≡ x mod n, the original message. We investigated why another party cannot �forge�
Alice's signature.

Finally, we started approaching the question on how to decide whether a given integer
n is prime or composite. Checking whether integers 2, 3, . . . up to

√
n divide n is very time

consuming when n is large. (We can restrict to only checking for prime factors, but this
assumes we know which integers are prime to begin with!)
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By the (general version) of Fermat's little theorem, if n is prime, then an ≡ a mod n for
all a ∈ Z. Hence if an 6≡ a mod n for some integer a, then n is de�nitely composite. In this
case, we call a a witness for the fact that n is composite.

This provides is an e�cient way to verify that a given composite integer is actually
composite: Check whether 2n ≡ 2 mod n, 3n ≡ 3 mod n, etc., until we �nd a congruence that
fails. Unfortunately, though, there exist integers n that are not prime, but that an ≡ a mod n
for all integers a. Therefore, there is no witness in this case, but n is not prime.

Composite integers n > 1 with the property that an ≡ a mod n for all a ∈ Z are called
Carmichael numbers. The smallest Carmichael number is 561. We started justifying that
this number is indeed a Carmichael number by factoring 561 as 3 · 11 · 17. We'll �nish this
next Thursday, and then prove a criterion for testing whether an integer is a Carmichael
number in general.

Tuesday, February 25. We started class today with announcements about Midterm 1,
additional o�ce hours, and quiz corrections.

After a short quiz on Euler's theorem, we recalled that the security of the RSA cryptosys-
tem relies on the fact that it is usually very di�cult to factor large numbers. We proceeded
to describe our second public-key cryptosystem, which relies on the fact that the discrete
logarithm problem is di�cult to solve: After �xing a large prime p and integers g,X (where
g can have large order modulo p), �nd an integer solution x to the equation

gx ≡ X mod p.

This cryptosystem, the ElGamal cipher, can be thought of as an application of the Di�e-
Hellman key exchange. Like RSA, one party (Alice) wants to receive messages from anyone,
after publishing public keys. One interesting di�erence, though, is that each party wanting
to send Alice a message must also choose their own secret key.

The ElGamal process is as follows: Alice picks a large prime p, and an integer g, preferably
that has large order modulo p. She picks a private key x ∈ Z, calculates X = gx % p, and
publishes the public-key triple

(p, g,X).

Then Bob, or anyone who wants to send Alice a message, chooses their own private key
y ∈ Z. Then he calculates Y = gy % p and k = Xy % p (this should look familiar from
Di�e-Hellman!). Then given a (chunk of) plaintext m ∈ Z, he turns it into the ciphertext
km % p. He then sends Alice this ciphertext with header �Y ;� that is, he sends

Y ; km % p.

Finally, to decrypt the message, notice that as in Di�e-Hellman, Alice can �nd k since

k = Xy % p = gxy % p = Y x % p

39



Spring 2020 MATH 601 Daily Update 40

and she knows x, her private key, and Y , sent as the header from Bob. Hence she can
calculate k−1 modulo p, and multiplies this by the ciphertext

k−1(km) ≡ m mod p,

so that its least nonnegative residue modulo p is the original message m.

We went though an example of encryption/decryption using ElGamal in detail, and then
noticed that it makes sense for Alice and Bob to choose private keys x and y, respectively,
relatively prime to p− 1 (which can be checked quickly via the Euclidean Algorithm).

We noticed that if an eavesdropper could �nd the key k, and break the code, if they could
solve the discrete logarithm problem: (p, g,X) are public, so if one could �nd x0 satisfying
X ≡ gx0 mod p, then since Y is published as Bob's header, one can compute

Y x0 ≡ (gy)x0 ≡ (gx0)y ≡ Xy ≡ k mod p.

We discussed one method for solving the discrete logarithm problem

gx ≡ X mod p (10.2.1)

where p is a prime, g is a unit modulo p, and X ∈ Z. The algorithm is called the baby-step,
giant-step method, and takes less than 2

√
p steps (while computing g, g2, g3, . . . could take

many more in general). Fix the smallest integer m for which p− 1 < m2. If x0 is a solution
to the discrete logarithm problem, we can assume 0 ≤ x0 < p−1 by Fermat's little theorem.
Apply the division algorithm to x0 and m to obtain

x0 = mq + r

where 0 ≤ r < m. Notice that if q ≥ m, then x0 = mq + r ≥ m2 + r ≥ m2 > p− 1, which is
not the case, so we can assume that 0 ≤ q, r < m. The process goes as follows:

Baby-step, giant-step method for solving the discrete logarithm problem. To
�nd an integer solution x0 to (10.2.1), after choosing m as above, proceed as follows:

Baby steps. List the least nonnegative residues modulo p of

1, g, g2, g2, . . . , gm.

Giant steps. List the least nonnegative residues modulo p of

X(g−m)i for i = 1, 2, . . .

until one matches with a least nonnegative residue on the baby step list.

Then if gj from the �rst list is congruent to X(g−m)i on the second, we have that
X · g−mi ≡ gj mod p, so X ≡ gj · gmi ≡ gmi+j mod p, and x0 = mi + j is a solution to
the discrete logarithm problem.
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Notice that in our setup above, since X ≡ gx0 ≡ (gm)qgr mod p for some 0 ≤ q, r < m,
gr ≡ X(g−m)q mod p. In other words, for some j on the �rst list, and 0 ≤ i < m on the
second list,

gj ≡ X(g−m)i mod p

so we know we will hit a match in fewer than m giant steps.

Thursday, February 20. Given relatively prime integers a and m > 1, we started
class by de�ning the order of a modulo m as the smallest positive integer d for which
ad ≡ 1 mod m. Analogously, the order of [a]m ∈ (Z/mZ)× is the smallest integer d for
which [a]d = [1].

The existence of such an integer d comes directly from Euler's theorem, which says
that if (a,m) = 1, then

aϕ(m) ≡ 1 mod m.

In other words, if [a]m ∈ (Z/mZ)×, then [a]ϕ(m) = [1].

We went through several examples of �nding orders modulo di�erent m, and applying
Euler's theorem. In fact, if (a,m) > 1, then a cannot have an order modulo m as de�ned
above, by a homework problem! We proved a lemma saying that if a and e ≥ 1 are integers
and ae ≡ 1 mod m, then e is a multiple of the order of a modulo m. We saw that this, in
combination with Euler's theorem, can help determine orders of integers!

On a related note, we turned to methods of e�cient exponentiation modulo an
integer. First, we noticed that using Fermat's little theorem of Euler's theorem, we can
reduce to computing an exponent smaller than ϕ(m) (which equals p− 1 if p = m is prime).
E.g., since 51100 ≡ 1 mod 101 by FLT,

51303 ≡ 513·100+3 ≡ (51100)3 · 513 ≡ 13 · 513 ≡ 513 ≡ 38 mod 101.

On the other hand, we turned to the question of �nding the least nonnegative residue
of 5432112345 modulo the prime 29989. Since 54321 ≡ 24332 ≡ −5657 mod 29989, we
could attack the �simpler� problem of �nding the least nonnegative residue of 2433212345 or
(−5657)12345 = −565712345 modulo 29989. Let's �nd the latter by �rst �nding 56572345 % 29989.

Our procedure for fast(er) exponentiation �rst requires writing the exponent in base
2. In our case,

12345 = 213 + 212 + 25 + 24 + 23 + 20.

Then
565712345 = 5657213 · 5657212 · 565725 · 565724 · 565723 · 5657.
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Next, we can iteratively �nd each term in the product modulo 29989:

56572 ≡ 32001649 ≡ 3386 mod 29989

565722 ≡ (3386)2 ≡ 11464996 ≡ 9198 mod 29989

565723 ≡ (9198)2 ≡ 4235 mod 29989

565724 ≡ 1803 mod 29989

565725 ≡ 11997 mod 29989

...

5657212 ≡ 15464 mod 29989

5657213 ≡ 3010 mod 29989

Note that in our procedure, we don't �skip� powers, so that the integer in each steps has a
relatively small number of digits. Finally, we �nd that

565712345 ≡ 3010 · 15464 · 11997 · 1803 · 4235 · 5657 mod 29989.

Again, iteratively multiplying and reducing, we �nd the least nonnegative residue to be 118,
so that 5432112345 ≡ −118 ≡ 29871 mod 29989

Note that in class, we started calculating the residue of 494112345 modulo 29989. If you
want to check your �nal answer, it is 12047.

Next, we fully described the RSA Cryptosystem. One party, which we will call Alice,
chooses two large distinct primes p and q, and makes m = pq public (i.e., n is a public key),
though p and q are kept secret. She then calculates ϕ(m) = (p − 1)(q − 1), and picks an
integer e relatively prime to ϕ(m); this is called the encryption exponent. (She can easily
verify that her exponent is valid by performing the Euclidean algorithm). Notice that the
public keys for RSA are the modulus m, and encryption exponent e.

To encrypt a message represented as an integer x, anyone who wants to send Alice a
message calculates

xe % m.

Anyone can do this, since m and e are public! However, only Alice can decrypt the message.
The decryption procedure is as follows: If y ∈ Z is the encrypted message, then she takes

yd % m,

where d is the decryption exponent, which is the inverse of e modulo ϕ(m). She can
easily �nd this via back-substitution in the Euclidean algorithm.

We checked that this procedure works as planned First, we noticed that since ed ≡
1 mod ϕ(m), ed − 1 = ϕ(m)k for some k ∈ Z. Hence if we encrypt x as xe % m, and then
decrypt, Alice obtains an integer congruent to

(xe)d ≡ xed ≡ xed−1 · x ≡ xϕ(m)k · x ≡ (xϕ(m))k · x ≡ 1k · x ≡ x mod m
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where x is the orginal message! Notice that we applied Euler's theorem to make this con-
clusion.

We went through an example using the primes p = 41 and q = 43.

Tuesday, February 18. We started class by de�ning the least nonnegative residue
of an integer a modulo m > 1, often denoted a%m, as the smallest nonnegative integer
congruent to a modulo m.

Next, we reviewed the process of ��ipping coins over the telephone,� and decided that
unless Alice has a process for �nding square roots modulo other primes, she should choose
primes congruent to 3 modulo 4, where we have a formula. We also discussed the fairness of
this process for Alice and for Bob.

For p a prime, we de�ned a primitive root modulo p to be a unit a modulo p for which
no pair of integers among

a, a2, . . . ap−1

are congruent modulo p. We found all primitive roots modulo 5, and then stated a theorem
saying the primitive roots exists modulo every prime p! In fact, there are ϕ(p− 1) primitive
roots modulo p, where ϕ denotes the Euler phi function.

After this, we presented the Di�e-Hellman Key Exchange. The goal here is to create
a secret key that only two parties know. Two public keys are published, a large prime p, and
a primitive root g modulo p.

The �rst party, Alice, picks a secret integer x and computes X = gx%p, passing X over
the public channel to the second party, Bob. Similarly, Bob picks a secret y and passes
Y = gy%p to Alice. Notice that anyone (e.g., the eavesdropper �Eve�) has access to X and
Y , but �nding x and y from these is di�cult; solving an equation of the form X ≡ gx mod p
for x is called a discrete logarithm problem.

Finally, Alice computes the secret key as k = Y x % p (she chose the secret integer x,
obtained Y from Bob, and p is public) and Bob computes it as k = Xy % p similarly.
Moreover, we con�rm that

Y x ≡ (gy)x ≡ (gx)y ≡ Xy mod p

so that Alice and Bob indeed have the same key k! We went through an entire example
illustrating the key exchange, using a relatively small prime.

Next, we introduced the RSA Cryptosystem, our �rst public key crypotosystem. We
described all public and private keys, and next time we will describe the procedures of
entcryption and decryption.

Finally, we had a quiz on square roots modulo integers.
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Thursday, February 13. We used the conclusions that we made last time (via the
Chinese Remainder Theorem) to �nd square roots mod p · q, where p and q are distinct
primes. In particular, an integer a has a square root modulo pq if and only if it has a square
root modulo p and modulo q. Using this, we found that 53 has no square root modulo 55
since it has no square root mod 5. On the other hand, 34 has square roots 12, 32, 28, and
43 modulo 55 (i.e., ±12,±28; these come from square roots of 34 ≡ 34 mod 5, 2 and 3, and
34 ≡ 1 mod 11, 1 and 10, via the CRT.

We concluded that there can be either zero or four square roots modulo pq if p and q are
distinct primes, unless one of them is 2 or a ≡ 0 mod pq.

Next, we discussed �ipping coins over the telephone. We describe the process: First,
Alice chooses large primes p and q, and sends their product, n to Bob. Bob can't factor n;
he picks a random large integer a and calculates c ≡ a2 mod n, sending c to Alice. Alice then
�nds the four square roots of c modulo n using the the factorization n pq and the Chinese
Remainder Theorem. These square roots are ±a and ±b for some integer b (but she does
not know which is a!) She chooses one of these, and sends it to Bob (her �guess�); say it is
a If x = ±a mod n, Alice �wins� the coin �ip, and Bob wins otherwise.

We did an example of how this process works using two primes. Then we discussed how
Alice can ensure that Bob doesn't cheat, and vice versa. For next time, make sure to verify
that Alice can �nd all square roots of c modulo pq! Also, try #1 from Homework 2 to make
sure that you can follow the process of �nding square roots modulo pq.

After this, we described the Caesar/shift cipher, and translated it into mathematics using
modular arithmetic.

Finally, we started de�ning the notion of a primitive root modulo a prime, but needed
to �x it! We'll start here next time.

Tuesday, February 11. Today we had a reminder about o�ce hours, and the extended
deadline on the programming portion of our �rst homework. We also quickly discussed the
solutions to the quiz from last time. From here, we recalled that last time, we showed that
if p is a prime congruent to 3 modulo 4, then −1 has no square root modulo p.

We also showed that if an integer a has a square root b modulo any prime p, then its
square root are precisely ±b (so there are exactly two unless a = 0 or p = 2).

Next, we stated the following proposition: Fix a prime p such that p ≡ 3 mod 4, and
an integer a. If p | a, then a has one square root modulo p, namely, 0. Otherwise, exactly
one of a or −a has a square root modulo p, and this square root is ±ap+1/4. We proved this
proposition.

Then we used the proposition to �nd the square roots of 5 modulo 11, and to fail to �nd
the square roots of 2 modulo 11�i.e., we proved that 2 is not a square modulo 11,.

Finally, we posed the question of when an integer a has a square root modulo pq, if p
and q are distinct primes. We used the CRT to show that a square root exists modulo pq if
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and only if a square root exists modulo p, and a square root exists modulo q! We will apply
this next time.

Thursday, February 6. We started class today with a short quiz on the de�nition
of congruences modulo an integer, the units of Z/mZ, and the statement of the Euclidean
Algorithm.

We then continued class by noticing that the CRT can be applied iteratively to solve
systems of congruences modulo integers that are pairwise relatively prime.

Next, if R and S are rings, we de�ned their product R × S, another ring. Then we
investigated the map

ψ : Z/6Z→ Z/2Z× Z/3Z
[a]6 7→ ([a]2, [a]3)

and determined that it is well-de�ned (actually a function between the two sets!), and a
bijection. Then we unraveled this fact to show that this is equivalent to the CRT with
m = 2 and n = 3!

In general, the CRT is equivalent to the bijectivity of the analogous map

ψ : Z/mnZ→ Z/mZ× Z nZ
[a]mn 7→ ([a]m, [a]n)

under the assumption that m and n are relatively prime.

We stated Fermat's little theorem: Suppose that p is a prime and a is an integer not
divisible by p, then

xp−1 ≡ 1 mod p.

We saw that this is equivalent to the statement that

xp ≡ x mod p

for every integer x.

We also noticed why the following property of primes holds: If a and b are integers,
and p is prime, then

p | ab =⇒ p | a or p | b.

However, this does not always hold if p is composite!

Next, given integers a and m > 1, we de�ned a square root of a modulo m as an
integer solution to the equation

x2 ≡ a mod m.

We found that 4 has square roots 2 and 3 modulo 5. These can also be described as ±2
and ±3 modulo 5, noticing immediately that in general, if b is a square root of a modulo m,
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then so is −a. We found, however, that 3 has no square roots mod 5; i.e., 3 is not a square
modulo m.

We found that ±1 are the only square roots of 1 modulo 17, or even modulo any prime
p. Also, modulo any integer, we at least have two square roots of 1 (±1) and one square
root of 0 (0).

In fact, 71 has a square root modulo 77. Howe to we �nd it?

We considered all primes congruent to each integer modulo 2, 3, and 4. We also roughly
described Dirichlet's theorem on the distribution of primes modulo di�erent integers. Then
we saw that if p ≡ 3 mod 4, then −1 cannot be a square modulo p!

Tuesday, February 4. We started class by reviewing the topics from last week, while
going through a series of examples to see how everything connects with one another.

We set up the following problem: If we have an army of an unknown number of soldiers,
but we know that the remainder when divided by 15 is 14, and by 17 is 1, than can we
decide how many soldiers are in the army (assuming it appears that there are fewer than,
say, 250)? This problem translates to �nding a solution to the system of congruence equations
x ≡ 14 mod 15 and x ≡ 1 mod 17.

This lead to the statement of the Chinese Remainder Theorem (CRT) in terms of
congruences: If m and n are relatively prime integers, the system of equations x ≡ a mod m
and x ≡ b mod n has an integer solution regardless of the integers a and b. Moreover,
the solution is �unique modulo mn,� meaning the following: (1) if x0 is a solution, then if
x0 ≡ y0 mod m, then y0 must be a solution, and (2) if z0 is a solution, then z0 ≡ x0 mod m.

We saw that not every system of congruences has a solution in the case that the moduli
are relatively prime. We also calculated that our army has 239 soldiers.

After this, we proved the existence of a solution in the CRT, and proved part (1) in
uniqueness. Part (2) is part of your �rst homework!

Tuesday, January 28 and Thursday, January 30. This week, Professor Marge Bayer
was a guest lecturer. On Thursday, we had a short quiz on groups.

In class, we de�ned the greatest common divisor of two integers m,n, denoted
gcd(m,n), or just (m,n), as the smallest positive common divisor (i.e., an integer d for
which d | m and d | n). We proved that if m and n are integers, and m = nq + r for some
integers q, r, then (m,n) = (n, r).

After this, we stated the Euclidean algorithm, and explained why the previous result
shows that it is a valid algorithm for computing a greatest common divisor. We also did an
example of carrying out the Euclidean algorithm. Bézout's theorem says that if m,n are
integers and d = (m,n), then there exist integers a, b for which

am+ bn = 1.
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Often we call this equationBézout's identity. We used �back substitution� in the Euclidean
algorithm to �nd integers a and b in our example.

From here, we stated the existence and uniqueness of prime factorization, and
proved it by induction.

We de�ned a ring, and gave examples; for instance, the integers, Z/mZ, rings of poly-
nomials, and the collection of square matrices. A unit of a ring as an element that has a
multiplicative inverse. We wrote out the multiplication table for Z/6Z, and found the units.
We also noted the units of Z/4Z and Z/9Z, and conjectured that the units of Z/mZ are [a],
where (a,m) = 1 We proved this conjecture.

Finally, for a positive integer m, we de�ned the Euler phi function ϕ(m) as the number
of integers 1, 2, . . . ,m relatively prime to m. We found formulas for ϕ(p) and ϕ(pk), if p is
prime and k is a positive integer. Then we stated the fact that ϕ(mn) = ϕ(m)ϕ(n), and
started investigating why this might hold.

Thursday, January 23. We started class today by de�ning an equivalence relation
on a set. After giving several examples (and non-examples!), we de�ned the equivalence
class [a] of an element a of the set S.

After this, we de�ned what it means for an integer a to divide anther integer b (often
written a | b): ak = b for some integer k. Then we de�ned what it means for two integers a,
b to be congruent modulo another integer m > 1 (written a ≡ b mod m):

m | (b− a).

When m = 2, we �gured out that two integers are congruent exactly if they are both
even or both odd. In general, two integers are congruent modulo m if and only if they have
the same remainder after dividing by m!

We proved that congruence modulo m is an equivalence relation. We call the equivalence
class of an integer a its congruence class, and often denote it [a]m, or just [a] if the modulus
m is understood. We described the congruence classes modulo m = 2 (the set of all even
integers, and the set of all odd integers) and m = 3. We noticed that there are exactly m,
and they can be written as [0] = [m], [1], [2], . . . , [m − 1]. We de�ned Z/mZ as the set of
equivalence classes of the integers under congruence modulo m.

Finally, we de�ned operations of addition and multiplication on Z/mZ:

[a]m + [b]m = [a+ b]m

[a]m · [b]m = [ab]m

However, through examples, we noticed that it is not clear that this operation is not obviously
well-de�ned, meaning that if [a] = [a′] and [b] = [b′], we must have that [a+ b] = [a′+ b′] and
[ab] = [a′b′]. We checked the �rst by hand, and left the second as homework.

47



Spring 2020 MATH 601 Daily Update 48

Finally, we checked that Z/mZ is group under addition, but is not a group under multi-
plication!

Tuesday, January 21. Today, we started class by going over the syllabus, and the
material on the course website. We went into detail about the course expectations.

Next, we introduced the notion of a group, and while studying these objects, introduced
some mathematical notation. Please interrupt me in lecture if you cannot remember what
certain notation means! We gave several examples of groups, including the sets of integers
Z, rational numbers Q, and real numbers R under addition. We noticed, however, that the
inverse property does not hold if we instead consider these sets under multiplication. To
rectify this, if S is a set with binary operation multiplication, we use the notation S× to
denote the subset of S of elements that have (multiplicative) inverses. Then as long as S
satis�es the associative properties and has a (multiplicative) identity, S× is a group under
the operation of multiplication. For instance R× = R\{0}, Q× = Q\{0}, and Z× = {1,−1}.

We also found a group in which the operation is not always commutative: The set of
n×n matrices with real entries and nonzero determinant, under matrix multiplication. This
is an example as above: the set of all n × n matrices that have multiplicative inverses. In
fact, the subset of these with determinant 1 forms a subgroup of this group, meaning a
subset that is itself a group under the same operation and identity.

After this, we proved that in a group, the identity is unique (there is only one), and each
element of the group has a unique inverse. If the operation is denoted · or ∗, then we often
denote the unique inverse of an element a as a−1. After this, we showed that cancellation
holds in a group: If a, b, and c are elements of a group (G, ∗), then if a ∗ b = a ∗ c, then
b = c. On the other hand, we found an example of matrices (that do not have nonzero
determinant!) for which cancellation holds.
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