
Daily Update

Math 500: Intermediate Analysis, Spring 2017

This is a brief summary of what was covered in lecture; please email me if you find a typo, and bring
question to office hours and class.

Lecture 28: Thursday, May 4. We started class by discussing series of functions
∞∑
k=1

fk(x),

and the function g(x) that they define on input values x for which the series converges. We defined
what it means for such a series of functions to be uniformly convergent to g(x). We proved that
if each fk(x) is continuous on an interval, and the series is uniformly convergent to g, then g must
also be continuous. Next, we stated and gave the ideas behind the Weierstrass M-test, giving
us one criterion that a series of functions can satisfy to ensure that the series converges uniformly
to g. We discussed an example of applying these two results.

Next, we recalled the definition of a power series
∞∑
k=0

ck(x−a)k centered at x = a, and proved

that

R =
1

lim sup |ck|1/k

is the radius of convergence in the sense that we remember from calculus class, and in even
a stronger (uniform) sense! We found the interval of convergence in some examples using this
definition of R.

Finally, we discussed the fact that power series can be integrated and differentiated term-by-
term, and the new series have the same radius of convergence as the original one. We finished the
lecture with the statement of Taylor’s formula, and briefly discussed its significance

Finally, we reviewed some of the kinds of problems that are likely to show up on the Final
Exam.

Lecture 27: Tuesday, May 2. We started class by recalling the Alternating Series Test; we
checked that both hypotheses are necessary by exhibiting examples where the conclusion fails after
removing a hypothesis. This test gives us nice examples of absolutely convergent series, like

∞∑
k=1

(−1)k+1 · 1

k2
= 1− 1

22
+

1

32
− 1

42
+ · · · ,

and conditonally convergent series, like

∞∑
k=1

(−1)k+1 · 1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · .

We defined the rearrangement of a series, and then stated the following theorems:

1. Theorem. If an absolutely series converges to a real number s, then every rearrangement of
the series also converges to s.
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2. Theorem. Given a conditionally convergent series, for any extended real number L, there
exists a rearrangement of the series that converges to L.

We gave the idea of how to prove (2) by considering the alternating harmonic series
∞∑
k=1

(−1)k+1 ·
1
k , which converges to ln(2). First, we found a rearrangement that converges to 3

2 ln(2), and then we
described methods of how to create a rearrangement that converges to 0, and another that diverges
to ∞! We found the first terms of these rearrangements. Important to the method is that

• The terms approach zero,

• There are infinitely many positive, and negative, terms, and

• The series of all positive, and all negative, terms diverge.

Finally we proved (1) using the definition of convergence, and absolute convergence, of series.

Lecture 26: Thursday, April 27. Today, we proved several theorems on infinite series that
we recall from calculus using techniques we have learned throughout our course, including methods
involving limits, limit suprema, and integrals.

We started by proving our generalized Comparison Theorem for infinite series, using the fact
that a sequence is Cauchy if and only if it converges. We did an example of a “non-traditional”
use of this comparison, where we applied L’Hôpital’s rule, and the definition of a limit.

Next, we stated and proved the Integral Test. We noticed that the p-test comes for free from
the integral test. We stated a stronger version of the Root Test than is given in calculus class, as
well as the Ratio Test, and showed how our new version of the former can be more former than
the latter.

Next time, we will turn to some facts about series that are new, and probably surprising!

Lecture 25: Tuesday, April 25. So far, we have only defined integrals of functions that are
bounded on a closed, bounded interval. We began class with a discussion on improper integrals,
integrals where either the interval is not bounded, or the function is not bounded on the given
interval To define such an integral, we use limits. Each time, we (possibly) need to first break up
the integral into an improper integral that is improper only because of one of its two endpoints.
Next, we replace the “problem” endpoint and take a limit.

For example, if f is bounded on an interval [a,∞) for a real number a, the integral
∫∞
a f(x) dx

is still improper since the interval [a,∞) is not bounded. We define∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a
f(x) dx.

Likewise, we can define
∫ b
−∞ f(x) dx if f is bounded on (∞, b] via a limit, and we define

∫∞
−∞ f(x) dx

by writing it as ∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx

for some a, and recalling the definition of each improper integral in the sum (in terms of a limit).
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We proved that the improper integral
∫∞
1

1
xp dx converges to 1

1−p if p > 1, and diverges if p ≤ 1.

For homework, you will verify for which values of p the improper integral
∫ 1
0

1
xp dx converges and

diverges.
Notice that this last integral is improper since it is not bounded on the interval (0, 1] (notice

that 1
x is not defined at x = 0). We define this type of improper integral as a limit, if it exists:∫ 1

0

1

xp
dx = lim

a→0+

1

xp
dx;

if this limit does not exist, we again say that the integral diverges. We pushed these ideas further,
giving examples of how to turn several improper integrals into sums of improper integrals with
only one endpoint that makes each improper; then we turned each of these integrals into limits of
integrals on closed, bounded sets (proper integrals).

Next, we defined an (infinite) series as a formal sum of real numbers ak:

∞∑
k=1

ak = a1 + a2 + a3 + . . . .

Associated to each series is its sequence of partial sums:

sn = a1 + a2 + . . .+ an =
n∑
k=1

ak.

We say that the infinite sequence converges and equals s if limn→∞ sn converges, and its limit is
the real number s.

We gave several examples. We first showed that the series 1
2 + 1

4 + 1
8 + · · · converges and equals

1. However, we were not able to find a formula for the n-th partial sum of the series
∑∞

k=1
1
k2

in order to investigate whether the sequence of partial sums has a limit. We agreed that the
series

∑∞
k=1

k+5
100k+3 should diverge since the terms approach 1

100 , and make this formal by proving
a theorem, sometimes called the term test: a series converges if and only if the limit of its terms
limit to zero. However, the converse statement does not hold: by grouping terms and creating a
new series from it, we showed that the series

∑∞
k=1

1
k diverges.

We next considered geometric series, those of the form:

∞∑
k=0

ark = a+ ar + ar2 + . . . ,

where a 6= 0 and r are real numbers. We proved that such a series converges if and only if |r| < 1;
in this case, the series converges to a

1−r .
Next, we showed that if ak ≥ 0 for all k, then

∑
ak converges if and only if the sequence of

partial sums is bounded above, using the Monotonic Convergence Theorem.
Finally, we stated a strengthening of the Comparison Test: Given series

∑
ak and

∑
bk,

where all bk ≥ 0, if there exist K,M for which

|ak| ≤Mbk for all n ≥ K,

then if
∑
bk converges, so does

∑
ak.
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Lecture 24: Thursday, April 20. Today was driven by the motivating question: What
exactly is the number e?

We first noticed that the “rule” that
∫
xn dx = xn+1

n+1 +C works for all rational numbers except
for n = 1.

We then used the Second FTC to construct a function called the “natural logarithm,” whose
domain is all positive numbers, that is an antiderivative of 1

x on this domain:

ln(x) =

∫ x

1

1

t
dt.

We noticed that ln(1) = 0 from the definition. Every antiderivative of 1
x on (0,∞) differs by a

constant from ln(x), so this is the unique antiderivative with value zero at x = 1.
From here, we first investigated the antiderivative(s) of 1

x on the interval (−∞, 0); as this func-
tion is continuous here, it has an antiderivative. We calculated (using substitution for integrals) that
ln(−x) = ln |x| (which makes sense, since −x = |x| is positive if x is negative) is an antiderivative,
so functions of the form ln |x|+ C are all antiderivatives of 1

x for x 6= 0.
We proved that ln(ab) = ln(a)+ln(b) for all a, b > 0 using the fact that ln(x) is an antiderivative

of 1
x . As exercises, you will also show that for all a, b > 0 and r ∈ Q, that

• ln(a/b) = ln(a)− ln(b), and

• ln(ar) = r ln(a).

We proved that ln(x) is strictly increasing on (0,∞) by finding its derivative using the Second
FTC. We also showed that lim

x→∞
ln(x) = ∞ and lim

x→0+
ln(x) = −∞ using the properties of natural

logarithm just established, and a straightforward argument applying the definition of a limit.
These facts show that ln(x) has domain (0,∞), and its set of output values is R! Then, since it

is strictly increasing, it is strictly monotonic, and therefore has an inverse. We define the function
exp(x) as its inverse function, so that exp(x) has domain R, and its set of output values is (0,∞).

We showed that exp(x) is its own derivative using the fact that its inverse is ln(x). Next, we
showed some properties (analogous to those for ln(x)): for all a, b > 0 and r ∈ Q,

• exp(a+ b) = exp(a) exp(b), and

• exp(ra) = (exp(a))r.

We think (know?) that exp(x) should “equal” ex, so these would translate to ea+b = eaeb and
era = (ea)r.

From here, we define the number e precisely!

e = exp(1).

In other words, since exp(x) and ln(x) are inverses, e is the unique number for which ln(e) = 1.
We checked that this means er = exp(r) for any rational number r, and we can then define ex for
x a real number:

ex = exp(x).

From here, we noticed that it is easy to define ax and loga(x) for a > 0, so that these are
inverses, and the typical exponent rules work.
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Finally, we started considering improper integrals, integrals where either the domain is un-
bounded, or the function in question is unbounded on its domain. If f is integrable on each interval
of the form [a, s], then we define ∫ ∞

a
f(x) dx = lim

s→∞

∫ s

a
f(x) dx.

We used this definition to find that
∫∞
0 e−x dx = 1.

We can define integrals of the form
∫ b
−∞ f(x) dx similarly. For next time, read (or remind

yourself) about integrals where the function is unbounded on the interval under consideration.

Lecture 23: Tuesday, April 18. We started class by recalling the Second Fundamental Theorem
of Calculus, and finishing its proof. We applied the theorem to find derivatives of functions that
are compositions of the antiderivative F constructed in the Second FTC, and another function.

From here, we used the First and Second Fundamental Theorems to prove the substitution rule,
and integration by parts, rules we take for granted!

Lecture 22: Thursday, April 13. We started class by recalling some of the important theorems
on integrals that we proved last time, and the tools we used to prove them. Next, we stated two
more: One on the integral of the absolute value of a function, and one on how integral behave with
respect to subintervals; the second is as follows: Fix c ∈ [a, b]. Then a function f integrable on
[a, b] if and only if f is integrable on both [a, c] and [a, b], in which case∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Next, we turned to the most important theorems in analysis: The Fundamental Theorems of
Calculus! We started by stating the First Fundamental Theorem of Calculus (FTC): Given
a function f for which:

• f is continuous on [a, b],

• f is differentiable on (a, b), and

• f ′ is integrable on [a, b],

then ∫ b

a
f ′(x) = f(b)− f(a).

From here, we first recified a strange part of this statement: If f is not differentiable at an
endpoint a or b, we can still consider f ′ to be integrable on the closed interval [a, b], since the
area under the curve will be the same as if we “artificially” assign values of f ′ at a and/or b. We
illustrated this with a picture, and we came back later in class to do a concrete example using an
equation.

We proved the First FTC using the Mean Value Theorem, Riemann/upper/lower sums, and
the squeeze theorem for limits.
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Next, we considered the function

f(x) =

{
x2 cos(1/x) if x 6= 0

0 if x = 0

We showed that f(x) is continuous and differentiable everywhere, and also showed that f ′(x) is
integrable on any closed interval, but it is not continuous at x = 0. This helps us see how functions
whose derivatives are not continuous may satisfy our hypotheses in the First FTC.

From here, we stated the Second FTC: Suppose that f is integrable on [b, c], and fix a ∈ [b, c].
Define a function

F (x) =

∫ x

a
f(t) dt

for x ∈ [b, c]. Then F is continuous on [b, c]. Moreover, for each point x ∈ (b, c) for which f is
continuous, F is differentiable at x, and

F ′(x) = f(x).

We illustrated the function F (x) using a graph, and then proved the first part of the theorem,
the continuous on [b, c]. In fact, it is uniformly continuous there!

Lecture 21: Tuesday, April 11. We started class by recalling the following: If f is a bounded
function on an interval [a, b], and there exists a sequence of partitions {Pn} on [a, b] for which

lim
n→infty

(U(f, Pn)− L(f, Pn)) = 0,

then f is integrable on [a, b], and∫ b

a
f(x) dx = lim

n→∞
U(f, Pn) = lim

n→∞
L(f, Pn),

and also equals the limit of any sequence of Riemann sums with respect to Pn.
From here, our goal for today was to investigate what functions are integrable.
We proved that any monotonic function on a closed, bounded interval [a, b] is integrable on

[a, b]. We also showed that any continuous function on [a, b] is integrable on [a, b]. Each of these
proofs involved finding limits of the difference between upper and lower sums!

Next, we investigated linearity of the integral: Given f, g integrable functions on [a, b], and
c ∈ R,

1. cf is integrable on [a,b], and
∫ b
a cf(x) dx = c

∫ b
a f(x) dx

2. f + g is integrable on [a,b], and
∫ b
a (f(x) + g(x)) dx =

∫ b
a f(x) dx+

∫ b
a g(x) dx

We proved (1) using facts about suprema and infinima, and gave some ideas on how to show (2).
We noticed that as a corollary, if f is an integrable function on [a, b], then

(inf
[a,b]

f)(b− a) ≤
∫ b

a
f(x) dx ≤ (sup

[a,b]
f)(b− a).

6
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We defined the mean/average value of an integrable function f on [a, b] as

1

b− a

∫ b

a
f(x) dx.

We proved, using the Mean Value Theorem, that if f is also continuous on [a, b], then there exists
a ≤ c ≤ b for which f(c) equals the mean value of f on [a, b].

Lecture 20: Tuesday, April 4. Today, we recalled the definition of upper and lower sums
corresponding to a partition of a bounded function on a closed interval. We noticed that this does
not require the function to be continuous on the interval! We also recalled the definition of the
upper and lower integrals, and showed that the former is always at least the latter. If the upper
and lower integrals are equal, we define the Riemann integral of a bounded function f on an

interval [a, b] to be the common value
∫ b
a fdx =

∫ b
a fdx, and denote it by∫ b

a
f(x) dx.

We proved that the Riemann integral of f on [a, b] exists if and only if for every ε > 0, there
exists a partition P of [a, b] for which

U(f, P )− L(f, P ) < ε.

From this theorem, we can conclude that the Riemann integral exists if and only if there exists a
sequence of partitions {Pn} for which

lim
n→∞

(U(f, Pn)− L(f, Pn)) = 0.

In this case, ∫ b

a
f(x) dx = lim

n→∞
L(f, Pn) = lim

n→∞
L(f, Pn),

and also equals the limit of any Riemann sum corresponding to the partitions {Pn}.
We found

∫ 2
0 x

2 dx using these methods (along with the given formula
n∑
k=1

k2 = n(n+1)(2n+1)
6 ),

and almost finished finding
∫ 1
0 e

x dx using the formula for the sum of a geometric series, and
L’Hôpital’s rule.

For Midterm 2, you will need to calculate the Riemann integral of a simple function
f on a closed interval [a, b], as in Example 5.1.9. For this, we can follow the following
procedure:

1. Fix the simple partition of [a, b] into n equal parts.

2. Find the corresponding upper and lower sums.

3. Show that the limit of the difference of these sums equals zero.

4. Find the Riemann integral as the limit of either the upper or lower sum.
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Lecture 19: Thursday, March 30. Today, we defined a partition of a closed interval, and
a Riemann sum associated to this partition. Note that this is more general that our typical
calculus definition, as a partition need not split the interval into subintervals of equal length, and
any arbitrary function value instead of a specified (left-hand, right-hand, midpoint) value. However,
any Riemann sum still represents the sum of areas of rectangles (possibly with signs added) as we
are used it.

We defined the upper sum for a function f on a partition P , U(f, P ) via replacing the
function value in the definition of a Riemann sum with the supremum of all function values among
input values in the subinterval in question. The lower sum L(f, P ) is defined analogously. We
noticed that L(f, P ) less than or equal to any Riemann sum on an interval, which in turn is less
than or equal to U(f, P ). We also computed an explicit example.

Next, we defined a refinement of a partition P as a partition Q containing all points of P ; i.e.,
P ⊆ Q. We gave an argument for the following theorem: If f is a bounded function on a closed
interval, and Q is a refinement of P , a partition on this interval, then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Then we used this to prove an interesting theroem: Given any two partitions P and Q on a closed
interval, if f is bounded on this interval, then

L(f, P ) ≤ U(f,Q).

We defined the upper integral and lower integral of f on a bounded interval [a, b] as”∫ b

a
fdx = inf{U(f,Q) | Q partition on [a, b]}∫ b

a
fdx = sup{L(f,Q) | Q partition on [a, b]}

The theorem above says that every lower sum is less than or equal to every upper sum, so that

every upper sum is an upper bound for the set of lower sums; therefore,
∫ b
a fdx ≤ U(f, P ) for every

partition P . We did not finish arguing that this means that
∫ b
a fdx is less than or equal to the least

upper bound of the set of all upper bounds; i.e.,∫ b

a
fdx ≤

∫ b

a
fdx.

We will use this to define the integral! Please note that §5.1 will be the last section covered on
Midterm 2. You may want to read ahead in §5.1 to complete the homework, or wait on some until
after Tuesday’s lecture, which will include both discussion of the integral, and some review.

Lecture 18: Tuesday, March 28. We started class by proving that any two antiderivatives
of a differentiable function on an open interval differ by a constant, a fact we use freely often in
calculus! This was a direct application of the Mean Value Theorem.

Next, we stated a generalization of the MVT, Cauchy’s MVT. Then we used this to prove
L’Hôpital’s Rule, which was involved, using three limits to construct “epsilon” values that work
together, along with the triangle inequality.
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We applied L’Hôpital’s Rule to find several limits, including lim
x→1

sin(πx)
lnx , lim

x→∞
ex

x100
(where we

needed to apply the rule 100 times), and the (in)famous lim
n→∞

1 + p
n
n, where p ∈ R is constant.

Notice for the last limit, that each term agrees with the differentiable function y = (1 + p
x)x at the

integer x = n. Then we can find lim
n→∞

ln((1 + p
n)n), and use this to find the original limit. We also

found lim
x→0

xx using a similar method.

Lecture 17: Thursday, March 16. Today, we recalled the definition, and pointed out again
that we can define the derivative on an open interval, referring to some examples from last time.

We showed that function that is differentiable at a point must be continuous at that point, and
gave a couple examples of functions that are continuous, but not differentiable.

We also stated some basic derivative rules that weren’t covered last time, including the chain
rule. We used the chain rule to derive the formula for the derivative of the inverse of a function,
and looked at an example.

Next, we stated and proved the Mean Value Theorem (MVT), which essentially states that
if f is a continuous function on a closed interval [a, b] that is differentiable on (a, b), then for at
least one point between a and b, the graph of f has tangent line parallel to the line joining (a, f(a))
and (b, f(b)) on the graph of f . This is a powerful and useful theorem!

This will help us find all antiderviatives of a given function!

Lecture 16: Tuesday, March 14. We started of by recalling what it means to say that
lim
x→a

f(x) = L and compared it with the definition of what it means for f to be continuous at a

point x = a to once again see that f is continuous at x = a if and only if both of the following hold

1. a is in the domain of f .

2. lim
x→a

f(x) = f(a).

Following this, we gave the following definition: If f is defined in an open interval containing the
point a, then the derivative of f at x = a is

f ′(a) = lim
x→a

f(x)− f(a)

x− a
,

which we later argued, after making the substitution x = a+ h is the same as the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

We say that f is differentiable at a if the derivative exists at a, and differentiable on an open interval
I if the derivative exists at every point a ∈ I.

We then argued that if f ′(a) exists, then lim
x→a

f(x) = f(a) (that is, the numerator of the fractions

above must go to zero in the limit). We also stressed the following: To verify that f ′(a) exists using
ε− δ methods, we need to first have a candidate L for the limit, and then play the ε− δ game to
prove that lim

x→a
f(x)−f(a)

x−a = L, which is often burdensome and tricky. We explicitly did this to show

that if f(x) = x2, then f is differentiable on R, and f ′(x) = 2x.

9
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Using the earlier facts that we reviewed about continuity, we were able to skip the ε− δ game
to more and still show that if f(x) = xn with n a positive integer, then f ′(a) = nan−1. Using
the definition of the derivative, we also recovered the well-known formula for the derivative of
f(x) =

√
x. Notice that although the domain of

√
x is [0,∞), it is differentiable only the open

interval (0,∞) (compare this to the derivative formula!).
To illustrate how much we take for granted from calculus, we tried to use the definition of the

derivative to explicitly show that the derivative of sin(x) is cos(x) (this involves some double-angle
formulas for sin(x)) and that the derivative of ex is ec (this involved a deeper understanding of
what the constant e actually means!). After realizing these subtle points, we then started proving
some basic formulas for derivatives. Using only the definition of the derivative, we proved the
product rule (fg)′ = f ′g + fg′. We also used the product rule to prove the well-known quotient

rule (f/g)′ = f ′g−fg′
g2

. We concluded the class with Quiz 7.

Lecture 15: Thursday, March 9. We started class by stating a theorem guaranteeing that a
sequence of functions converges uniformly to the zero function, and then applied it to the sequence
{sin(nx)/n}∞n=1, where the domain of each function is R.

Next, we defined the limit of a function at a point (if it exists): Suppose that f is a func-
tion defined at all points on an open interval, except possibly at a ∈ I. Then we say that the
limit of f(x) as x approaches a equals L, and write

limx→af(x) = L,

if given any ε > 0, there exists δ > 0 for which

|f(x)− L| < ε whenever 0 < |x− a| < δ.

We noticed that the condition 0 < |x− a| precisely means that x 6= a; this must be a requirement
since f(a) does not have meaning if a is not in the domain of f .

We also noticed that if f is defined at a, then if L is replaced with f(a), then this is precisely
the definition of what it means for f to be continuous at a! Therefore, we can conclude that if f
is defined on an open interval containing a, then

f is continuous at a ⇐⇒ lim
x→a

f(x) = f(a).

We turned to an example, showing that lim
x→1

x3−1
x−1 = 3 using the principle just noted. Next, we

tried computing the limit lim
x→0

|x|
x , but it turns out that it does not exist!

This led into the notion of one-sided limits, including limits to ∞ or −∞. These definitions
can be thought of as adding restrictions to the x-values in the definition of a limit (e.g., x < a or
x > a), but we also gave a simpler, equivalent definition that does not require a “δ.” From the
definition of a one-sided limit, it is clear that if a is a real number in an open interval, where f is
defined at each point in the interval except possibly at a, then

lim
x→a

f(x) = L ⇐⇒ lim
x→a+

f(x) = L and lim
x→a−

f(x) = L.

In particular, for a limit to exist, both two-sided limits must be equal!
Next, we showed that lim

x2+5x+3
3x2 − 7 = 1

3 using the definition of a limit; this was a bit te-

dious! Then we stated the Main Limit Theorem for limits of functions approaching a real
number, analogous to the Main Limit Theorem for sequences. Then we applied this theorem to the
aforementioned example, quickly verifying the limit.

10
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Lecture 14: Tuesday, March 7. Given a function f : D → R, we reviewed the difference
between what it means for f to be continuous on D (or continuous at a ∈ D), versus f uniformly
continuous on D. The difference is that we can find a “uniform” δ > 0 for each ε > 0.

We argued, using work from last time, that the function f(x) =
√
x is uniformly continuous

on [0,∞). Recall that we already showed that this function is uniformly continuous on [1,∞).
Moreover, every continuous function on a closed, bounded interval is continuous on that interval,
so f is uniformly continuous on [0, 2]. We constructed a “δ” using the two “δs” coming from each
of these statements!

Given a sequence of functions {fn}, each with domain D, we we recalled what it means for the
sequence of functions to converge pointwise, and to converge uniformly to a function f with domain
D. For the latter, we can find a “uniform” N for each ε > 0 that “works” for all points in the
domain D.

Consider the sequence of functions {fn}∞n=1, where fn(x) = xn. We showed that on the domain
D = [0, 1], {fn} converges pointwise to the function

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1
,

but that it does not converge uniformly to f . On the other hand, on the domain D = [0, 12 ], we
showed that {fn} does converge uniformly to f !

With this example in mind, we stated a theorem: If {fn} is a sequence of continuous functions
on a domain D, and {fn} converges uniformly to a function f on D, then f must be continuous on
D.

Finally, we considered the sequence of functions {fn}∞n=1, where fn(x) = 1
1+nx . We first showed

that each fn is continuous on [0,∞). Then, we calculated that {fn} converges pointwise to

f(x) =

{
1 if x = 0

0 if x > 0
.

Since f is not continuous at x = 0, we can use the theorem above to conclude that {fn} does not
converge uniformly to f on [0,∞).

The theorem we invoked gives a criterion for a sequence of functions to not converge uniformly
to its pointwise limit. For next time, remember to read about a theorem tat the end of the section
that guarantees uniform continuity.

Lecture 13: Thursday, March 2. First, we recalled what it means for a function to be
uniformly continuous on a domain. We sketched f(x) = 1

x and g(x) =
√
x, and noticed the

differences between the two.
We proved that f(x) = 1

x is not uniformly continuous on the interval (0, 1], but that it is
uniformly continuous on the interval [2, 3].

We next stated a theorem that a continuous function on a closed, bounded interval is also
uniformly continuous on this interval.

Next, we proved that g(x) =
√
x is uniformly continuous on a non-bounded interval, [1,∞).

11
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From here, we stated and proved the following theorem: If f is uniformly continuous on
a domain D and {xn} is a Cauchy sequence in D, then the sequence {f(xn)} is also a Cauchy
sequence.

We defined the closure I of an interval I, which is another interval with its finite endpoints
included. We were then able to state the following theorem: Suppose that a function is continuous
on a (not necessarily closed) interval I. Then f has a continuous extension to I if and only if f is
continuous on I. We gave examples where this extension does not exists (e.g., f(x) = 1

x on (0, 1]),

and where it does (g(x) = x2+x
x on (0, 1]).

From here, we turned to discuss sequences of functions. We defined what if means for a
sequence of functions {fn}, where fn : D → R, to converge pointwise to a function f : D → R.
Then we defined what it means for {fn} to converge uniformly to f .

For next time, practice proving that a function is (or is not) uniformly continuous on a domain.
Then read about general limits in the next section.

Lecture 12: Tuesday, February 28. We started class by restating the theorem characterizing
continuity of a function at a point in terms of sequences convergence.

Next, we turned to investigating the domain of the sum, product, quotient, and composition
of two functions with given domains. Then, we stated a theorem that says that if f and g are
functions and x = a is a point in the domain of both, then if both f and g are continuous at a,
then so are the functions cf , f + g, and fg, where c ∈ R is any constant. Moreover, if g(a) 6= 0, f

g
is also continuous at a.

We proved the first two parts of this theorem using the δ − ε definition of a limit, and then
using the firs theorem we stated today. The second was was easier!

Next, we stated a theorem that if g is continuous at a and f is continuous at g(a), then
the composition f ◦ g is continuous at a. We motivated the hypotheses, and did some examples
illustrating this, and the previous, theorem.

We recalled what it means for a function to be bounded above, bounded below, and
bounded on a subset of its domain. We did several examples, computing whether the function
f(x) = 1

x is bounded above on different subsets of its domain R \ {0}.
Next, we stated the following theorem: If f is continuous on a closed, bounded interval I,

then f is bounded on I, and attains its maximum and minimum values on I. We discovered that
without each hypothesis, we do not necessarily get the conclusions by looking back at our example
f(x) = 1

x .
From here, we stated the Intermediate Value Theorem (IVT): Suppose that f is a function

defined on an interval containing x = a and x = b, where a < b. If y is any value between f(a) and
f(b), then there is some c in the interval [a, b] such that f(c) = y. We sketched two graphs, the
first motivating why this holds for f continuous, and the second showing that the conclusion need
not hold if f is discontinuous at a point between a and b.

Finally, we used the IVT and a theorem from earlier today to show that if f is continuous on
a closed, bounded interval I, then f(I) is either closed and bounded, or consists of one point. We
did a couple examples to illustrate this.

Lecture 11: Tuesday, February 21. We started class by showing one method for proving the
following proof-writing assignment: If {an} and {bn} are sequences, {an} converges to zero and
{bn} is bounded, then {anbn} converges to zero.

12
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Next, we recalled the definition of continuity of a function at a point in its domain. We played
the “ε− δ” game with two functions with domain R. Starting with f(x) = x + 10, we found that
δ = ε works for all real numbers a, and for g(x) = 3x, we found that δ = ε/3 works for all values
of a.

Next, we considered the following piecewise function with domain R:

h(x) =

{
x if x < 0

x2 + 1 if x ≥ 0

We proved that h(x) is not continuous at x = 0 by fixing ε = 1
2 (not that even ε = 1 would work),

and showing that no matter how small |x| is forced to be, we can still such an x value for which
|h(x)− 1| > ε = 1

2 .
We turned to showing that more complicated functions are continuous at certain points. We

proved that f(x) = 1
1+x is continuous at x = 1; once we were given ε > 0, our choice of δ was

min{1, 2ε}. We also proved that g(x) =
√
x is continuous at x = 4 using δ = min{1, (

√
3 + 2)ε}.

Then we showed that g(x) =
√
x is continuous, meaning that it is continuous at every point of its

natural domain [0,∞)! We needed to be careful with our choice of δ; it ended up relying on a and
on ε:

δ =

{
min{1, (

√
a− 1 +

√
a)ε} if a > 1

min{1,
√
aε} if 0 ≤ a < 1

Finally, we stated a theorem that a function f : D → R is continuous at a point a ∈ D if and
only if for any sequence {xn} converging to a, the sequence {f(xn)} converges to f(a).

Using this theorem and the Main Limit Theorem, we proved that f(x) = xr is continuous on
its natural domain for every rational number r. Note that if r = p

q is written in lowest terms with
p, q integers, then the domain of f is R if q is odd, and is [0,∞) if q is even.

Lecture 10: Thursday, February 16. We started off by recalling the definition of a limit of a
sequence, and also introduced the “ε−N game” formulation of this definition. This is a two-player
game between P1 and P2 to check whether lim

n→∞
an = L.

1. P1 declares a distance ε > 0.

2. After doing side work, P2 responds with an integer N such that |L−an| < ε whenever n > N .

If P2 cannot respond (i.e., if such an N does not exist for the declared distance ε) then P1 wins.
Otherwise, P2 wins. If P2 always wins no matter what distance P1 declares, then lim

n→∞
an = L.

For practice, we played the ε−N game to show that lim
n→∞

n2+1
n2 = 1.

We moved on to discussing function notation. Recall that

f : D → R and D
f−→ R

both mean that f is a function whose domain is a subset D ⊆ R and such that f(x) ∈ R for all
x ∈ D. After discussing different classes of functions (e.g., polynomials, rational functions, trig
functions and their inverses) and their domains, we then gave the following definition of continuity
at a point.

13
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Definition: If f : D → R and a ∈ D, then f is continuous at a if given ε > 0, there exists δ > 0
such that |f(x)− f(a)| < ε whenever |x− a| < δ.

We graph a graphical interpretation of this definition, and showed how it is consistent with our
intuition of what “continuous” means in terms of graphs of functions. In analogy with the previous
game, we introduced the “ε − δ” game at a point a ∈ D. This is a two-player game between P1
and P2 to check whether f : D → R is continuous at a point a ∈ D.

1. P1 declares a distance ε > 0.

2. After doing side work, P2 responds with a distance δ > 0 such that |f(x)−f(a)| < ε whenever
|x− a| < δ.

If P2 can respond, then P2 wins. If P2 can always win no matter what distance P1 declares, then
f is continuous at a ∈ D.

We stressed that the outcome of this game depends on the value of a. That is, for some a,
P1 can always win, but for other values of a, P1 may sometimes lose. We then played the ε − δ
game for various a for the function f = x2 with domain D = R. After this, we then played it for
a general a ∈ D, and we saw that if P1 declares an arbitrary distance ε > 0, then P2 can always
respond with

δ = min

{
1,

ε

2a+ 1

}
.

We did something similar with the function f(x) = 1/x with domain D = R \ {0} to show that
when a = π, then if P1 declares an arbitrary distance ε > 0, then P2 can always respond with

δ = min
{
π − 3,

ε

3π

}
.

Both of these examples illustrated the following important point: The response δ often de-
pends on both ε and the point a ∈ D you are checking continuity at!

Lecture 9: Tuesday, February 14. We started class by clarifying the definition of extension
of the Monotone Convergence Theorem (MCT) to limits in the extended real numbers. A limit can
have a possibly infinite limit, but we only say that a sequence converges if its limit is finite.

We stated a theorem that says that if a sequence has a (possibly infinite) limit, then every
subsequence of this sequence has the same limit. From here, we stated the Bolzano-Weierstrass
Theorem, which says that every bounded sequence has a convergent subsequence. Due to the
bounded assumption, the limit of a convergent subsequence in this theorem must be finite.

We gave several examples of sequences, determined whether they are bounded, and if so, found
one (or more) convergent subsequences. We know at least one exists by the Bolzano-Weierstrass
Theorem!

Next, we gave some important ideas from the proof of the Bolzano-Weierstrass Theorem.
After this, we defined what it means for a sequence to be Cauchy, and then proved that the

sequence { 1
2n } is Cauchy.

The notion of Cauchy sequences is important due to the following theorem: a sequences is
Cauchy if and only if it converges. We proved the direction that says that a convergent sequence
must be Cauchy.

Associated to any sequence {an}, there are two intrinsically-defined sequences, one of which is
non-increasing (which we called {sn}), and one of which is non-decreasing (which we called {in}).

14
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If the original sequence is bounded, then both are also bounded, so both converge by the MCT. The
limits of these sequences are the limit superior, lim sup an, and the limit inferior, lim inf an, of
the original sequence. We noticed that if the original sequence is bounded, then so are these limits.
We computed some examples of finding these values.

A subsequential limit of a sequence is the limit of a subsequence of the original sequence.
We did some examples of finding some subsequential limits of sequences. They we stated the fact
that every subsequential limit is bounded between the limit superior and the limit inferior of the
sequence. Moreover, we know that these bounds are themselves subsequential limits!

We stated and proved a theorem that a sequence has a certain limit if and only if its limit
inferior and limit interior equal that limit value.

Lecture 8: Thursday, February 9. We began class by re-stating the Monotone Convergence
Theorem (MCT). We went through a full example, showing that the sequence recursively defined
by

a1 = 1, and an+1 =
an

1 + 2n
for n ≥ 1

is decreasing and bounded, so it must converge. We did so by proving by induction on n that
an > an+1 > 0. We noted that the MCT does not tell us what value it converges to, but since we
showed that 0 < an < 1 for all n ∈ N, we argued that the limit is in the interval [0, 1].

Next, we defined what it means for a limit to be infinite: Given a sequence {an}, we say that
lim
n→∞

an = ∞ if the following holds: Given any real number M , there is some real number N for

which
an > M whenever n > N.

Alternately, we say that lim
n→∞

an = −∞ if given any real number M , there is some real number N

for which
an < M whenever n > N.

Here, just like we did to define suprema and infinima, we are extending the notion of a limit to
the extended real number system. In fact, the MCT has an extension in this setting: If we include
infinite limits, we can say that any (not-necessarily bounded) monotone sequence has a limit!

Note that we only say that a sequence converges if it has a finite limit!
We sketched graphs, and saw that the analogue of our infinite bars of width 2ε about a finite

limit is the “half-plane” above the line y = M .
We used this definition to prove that for any real power p > 0, lim

p→∞
np = ∞. (Given M , our

value of N was N = M1/p = p
√
M .)

Next, we stated some properties involving infinite limits, and proved one: If {an} is a positive
sequence, then if its limits is ∞, then the limit of the sequence { 1

an
} is zero. (This is actually an

“if and only if” statement.) We noticed that in proving this, we needed to use both the definition
of a finite limit, and an infinite limit.

Finally, we defined a subsequence, and after considering some examples, we state the Bolzano-
Weierstrass Theorem: Every bounded sequence has a convergent subsequence.

For next time, check out the definition of a Cauchy sequence.
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Lecture 7: Tuesday, February 8. Today, we again reviewed the definition of a limit. We
proved that lim

n→∞
n3

3n3−4n = 1
3 , which took an extra step compared to our examples last time.

We gave an alternative definition for lim
n→∞

an = L, where L is a real number: Given any real

number ε > 0, there only finitely many values of n for which |an − L| ≥ ε.
We translated this, and the usual definition of a limit to state precisely what lim

n→∞
an 6= L means

mathematically, and we applied this in an example.
Next, we proved the Squeeze theorem for limits, and stated and motivated the Main Limit

Theorem, which has several parts. We applied several of these parts to show that

lim
n→∞

7n5 + 3n4 + 2

3n5 − 2n2 + 1
=

7

3

without using the formal definition of a limit. (We did use that 1
n → 0 as n→∞, which we proved

using this formal definition.)
Next, we defined what it means for a sequence to be increasing, decreasing, non-increasing,

or non-decreasing. A monotone (or monotonic) sequence is one that is either non-increasing
or non-decreasing.

We stated the Monotone Convergence Theorem (MCT): A bounded monotonic sequence
converges.

We noted that given the sequence recursively defined by

a1 = 0 and an+1 =
an + 1

2
for n ≥ 1,

it can be proved by induction on n ∈ N that an ≤ an+1 < 1 for every natural number n. The first
inequality tells us that {an} is non-decreasing, and the second tells us that it is bounded above
by 1. Since it is non-decreasing, it is also bounded below by its first term a1 = 0. Therefore, the
sequence converges by the MCT! We noted, however, that the theorem does not tell us the value
of the limit.

Lecture 6: Thursday, February 2. We started class today by recalling the definition of a
limit of a sequence.

We proved, using this definition that lim
n→∞

1
n2 = 0, that lim

n→∞
n

3n+5 = 1
3 , and that lim

n→∞

√
9 + 1

n =

3. We also showed that the sequence an = (−1)n has no limit using a proof by contradiction, and
our definition of limit.

We defined a sequence to be bounded above if the set of its values is bounded above, and
bounded below analogously. A sequence is bounded if it is both bounded above and below. We
proved, using the definition of a limit, that a convergent sequence is bounded.

Finally, we proved that if the sequence {an} converges to limit L, then the sequence whose
terms are |an| converges to limit |L|. This used the second part of the triangle inequality.

Lecture 5: Tuesday, January 31. We started class by coming back to suprema and infima,
defining them for a function between sets, with a possible argument of a subset of the domain of
the function.
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We recalled the definition of the absolute value of a real number, and showed that for real
numbers x, a,, and ε, where ε > 0.

|x− a| < ε if and only if a− ε < x < a+ ε.

In other words, x is within ε of a. Thus, a small value of ε ensures that x is close to a.
We proved the first part of the triangle inequality: For real numbers a and b, we always have:

• |a+ b| ≤ |a|+ |b|

• ||a|+ |b|| ≤ |a− b|

Next, we turned to sequences, giving notation, and practicing finding explicit descriptions for
sequences in two examples. We noticed that every sequence can be expressed in multiple ways,
including after renumbering its indices.

We gave the rough idea of what the limit of a sequence is (if it exits), and how the precise
definition is (literally) more precise than our general idea of a limit. Then we stated the definition:
A sequence {an} converges to a real number L, called its limit, if the following holds: Given any
ε > 0, there is some real number N for which

|an − L| < ε whenever n > N.

In this case, we write lim
n→∞

an = L or say that an → L as n→∞.

We drew some pictures, graphing values of a sequence an with respect to inputs n ∈ N that
vary along the x-axis. The sequence limits to L means that for any ε > 0, eventually all points
on this graph are in the horizontal bar of width 2ε centered at y = L. The value of N can be any
x value such that beyond this value, all points are inside the bar. We noticed that we can always
take N to be a natural number.

Finally, we proved, using the definition of a limit, that if an = 1
n , then lim

n→∞
1
n = 0.

Remember to study the definition of the limit of a sequence for next time!

Lecture 4: Thursday, January 26. We started class by recalling the definition of a Dedekind
cut of the rational numbers Q, and the fact that for every rational number, there is a canonical
(intrinsically defined) Dedekind cut. We also discovered another Dedekind cut during our last class
period that does not come from a rational number.

In fact, every Dedekind cut can be associated to a real number, and vice versa: there is a
correspondence between them. For r ∈ Q, the Dedekind cut Lr defined last time corresponds to
the rational number r. The “new” Dedekind cut L from last time corresponds to the real number√

2 that is not rational. We will denote by Lx the Dedekind cut associated to the real number x.
Under this correspondence, we can define the order on the real numbers (as Dedekind cuts):

x ≤ y ⇐⇒ Lx ⊆ Ly.

We saw that this makes sense based on the picture when x and y are rational.
Moreover, x+ y corresponds to the set

Lx + Ly = {r + s | r ∈ Lx, s ∈ Ly},

which is, in fact, a Dedekind cut! (You will have a chance to check this in homework.) Similarly,
xy is defined via a new Dedekind cut denoted Lx ·Ly; you can check out the definition in the book.
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From here, we turned to the definition of a set S being bounded above by a number N :

x ≤ N for all x ∈ S.

In this case, we call N a upper bound for S. If S has an upper bound, we say that it is bounded
above, and if there is a smallest upper bound, we call it the least upper bound for S. We did
several examples, finding the upper bound for subsets of R, if there was one, and proving there
wasn’t one if not. In all cases where a set had an upper bound, it had a least upper bound. This
motivated the following theorem:

Theorem. Every nonempty subset of the real numbers that is bounded above has a least upper
bound.

We proved the theorem using our definition of the real numbers via Dedekind cuts of Q.
We call the real numbers complete because they satisfy the property in the statement of the

theorem. We noted that completeness gives the Archimedian property of the real numbers: for
every x ∈ R, there exists n ∈ N for which x < n.

Next, we turned to the analogue of upper bound called a lower bound. We figured out that
the appropriate analogue of a least upper bound is a greatest lower bound.

We argued that every nonempty subset of the real numbers that is bounded below has a greatest
lower bound by negating each element of the set and reducing to the theorem above about least
upper bounds.

From here, our goal is to assign a “greatest lower bound” and “least upper bound” to every
nonempty subset of R, regardless of whether it is bounded below or above. For this reason, we
defined the extended real number system, which includes two “new” numbers denoted “∞”
and “−∞. After some discussion, we used this new system to define the supremum of any subset
S of R, sup(S), an extension of the notion of a least upper bound, and the infimum of S, inf(S), an
extension of the notion of the greatest lower bound. We did several examples, finding the supremum
and infimum of sets.

Finally, for sets S, T ⊆ R, we defined new sets called −S, S + T , and S − T , and then stated
some relationships between supremums and infimums.

Lecture 3: Tuesday, January 24. Continuing toward building the real number system, we
first described how we obtain the integers Z from the natural numbers N. We stated the axioms
that the set of all integers Z are required to satisfy, based on the two operation of addition and
multiplication. From here, we noticed a defect: given an integer x, there is no integer y for which
xy = 1; in this case y would be a multiplicative inverse of x. If we extend the integers to include all
rational numbers, Q, each nonzero number has a multiplicative inverse. We discussed how we can
extend the operations of addition and multiplication to the rationals, and also the order which is
determined for the natural number using Peano’s axioms. We stated the axioms necessary for the
set of rationals to be an ordered field, and then proved some basic facts involving inequalities of
rational numbers using them.

From here, we noticed that some important numbers that come up naturally (like
√

2 or π)are
not rational, they are irrational. In order to “fill in” the gaps that the rationals leave, we need to
build the real number system. To start doing so, we defined a Dedekind cut of rationals, which
is a subset of Q that satisfies three properties. We argued that for any rational number r,

Lr = {x ∈ Q | x < r}

18



Fall 2016 Math 500: Intermediate Analysis 19

is a Dedekind cut. It was a bit trickier, but we showed that

L = {r ∈ Q | r ≥ 0 and r2 < 2} ∪ {r ∈ Q | r < 0}

is also a Dedekind cut, but it is not Lr for any rational r. In fact, we will match each Dedekind cut
with a real number; Lr represents the rational number r, and L represents

√
2. Next time, we will

finish describing how the set of all Dedekind cuts can be thought of as our system of real numbers.

Lecture 2: Thursday, January 19. First, we recalled the definitions of the image and
preimage (or inverse image) of a set with respect to a function. Note that the applicable sets
must be subsets of either the domain, or the set of output values, depending on which of these
notions we refer to.

Next, we stated a theorem relating the preimage of a union, intersection, or complement to the
union, intersection, or complement of the image. We proved the first part of the theorem. Next, we
stated an analogous theorem for the image; we noticed that some equalities of sets were replaced
with subsets, a weaker statement than our first theorem. We proved the third part of this theorem.

We finished the basics of set theory by defining the Cartesian product two sets, or infinitely
many sets indexed by the natural numbers.

We turned to the notion of “constructing” the natural numbers. We stated Peano’s axioms for
the natural numbers, and stressed the fact that we should think of the “successor” of a number
to be one more than it, but that these axioms can be assumed without the concept of addition.
Those of us familiar with the concept of induction noticed that the final axiom appears to be an
application of the Principle of Mathematical Induction. We stated this principle:
The Principle of Mathematical Induction. Suppose that {Pn} is a statement about an integer
n, where n ≥ n0. If

• Pn0 is true, and

• Whenever we assume that for some n ≥ n0, Pn is true, then Pn+1 also holds,

then we can conclude that Pn is true for all n ≥ n0.
We motivated the ideal of the Principle of Mathematical Induction using the analogy of an

infinite stairway or row of dominos. We then proved two statements using it. Each included
checking the base case, stating the so-called “inductive hypothesis,” and a proof that completes the
inductive step by applying the inductive hypothesis. The first statement involved divisibility, and
the goal of the second was to show that a certain recursively-defined sequence is bounded above
and increasing (so that it converges!).

Lecture 1: Tuesday, January 17. We started class by familiarizing ourselves with the course
website and the syllabus.

Next, we introduced the notion of a set, which is a collection of objects called elements. We
gave several examples that illustrate how sets can be defined, and what notation is convenient to
use in different situations. We defined a subset of a set, and the empty set (or null set) as the
set with no elements. We gave a precise mathematical definition for the intersection and union
of two, or more, sets (even infinitely many!). Two sets are called disjoint if their intersection is
the empty set. Throughout this dicussion, we gave examples.
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We defined the complement of one set inside another, including the case when all sets are
thought of as subsets of one “universal” set. We stated a theorem relation the complement of an
intersection (union, respectively) to the union (intersection, respectively) of the complements, and
proved it using the basic definitions introduced thus far today.

Next, we turned to some formal definitions involving functions from one set to another. We
defined the image of such a function, and the image of a subset of the domain. We defined (and
described in several ways) what it means for a function to be one-to-one (1-1) or onto. We ended
the class by defining the inverse image of a set under a function.
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