
Selected Homework Solutions

Math 500: Intermediate Analysis, Spring 2017

[§1.1: #2] An element x ∈ A ∩ (B ∪ C) if and only if x ∈ A and x ∈ B ∪ C. This is true if and
only if x ∈ A, and x is in either B or C; in other words, either x is in both A and B, or in A and
C. This holds if and only if x ∈ A ∩B or x ∈ A ∩ C, i.e., x ∈ (A ∩B) ∪ (A ∩ C).

[§1.1: #4] The answer is the closed interval [0, 1]. Hint : Think about why it is enough to show
that:

1. The entire closed interval [0, 1] is in the specified intersection. (You might want to use the
fact that [0, 1] = (0, 1) ∪ {0, 1}.)

2. If either x < 0 or x > 1, then x cannot be in the intersection. (Exhibit an open interval
containing (0, 1) but not containing x.)

[§1.1: #5] The answer is [0, 1]. Hint : Think about why it is enough to show that:

1. Every closed interval containing (0, 1) contains [0, 1].

2. No proper interval that is a subset of [0, 1] contains (0, 1). (Think about [0, 1] \ (0, 1).)

[§1.1: #9] We prove the statement using a series of “if and only if” statements:

x ∈ f−1(E ∩ F ) ⇐⇒ f(x) ∈ E ∩ F
⇐⇒ f(x) ∈ E and f(x) ∈ F
⇐⇒ x ∈ f−1(E) and x ∈ f−1(F )

⇐⇒ x ∈ f−1(E) ∩ f−1(F ).

[§1.1: #13] One example is exhibited by the function f : R → R, where E = [−1, 1] and
F = [0, 1]. What are f(E) \ f(F ) and f(E \ F ) in this case?

[§1.2: #2] Hint : Proceed by induction on n ∈ N. You may want to use Peano’s Axiom N3 for
the base case of your induction, and N4 for the inductive step. Note that you may use the result
of Example 1.2.5 in your inductive step as well.

[§1.2: #8] We prove the statement by induction on n ∈ N.

We start with the base case, n = 1. Since 71 − 21 = 5, the statement is true.

Now we state the inductive hypothesis: For some n ∈ N, assume that 7n − 2n is divisible by 5.
This means that 7n − 2n = 5k for some integer k. Therefore,

7n+1 − 2n+1 = 7n · 7− 2n+1 by the inductive hypothesis

= (5k + 2n)7− 2n+1

= 5(7k) + 2n · 7 + 2n · 2
= 5(7k) + 2n · 5
= 5(7k + 2n).
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We conclude that 7n+1 − 2n+1 is a multiple of 5. Therefore, by the Principle of Mathematical
Induction, 7n − 2n is a multiple of 5 for every n ∈ N.

[§1.2: #9] We will show by induction on n ∈ N that 1 + 2 + 3 + · · ·+ n = n(n+1)
2 .

We start with the base case, n = 1. The left-hand side of the equation only has the term “1,” and
the right-hand side equals 1·2

2 = 1, so the statement holds.

Now we state the inductive hypothesis: For some n ∈ N, assume that 1+2+3+ · · ·+n = n(n+1)
2 .

Then

1 + 2 + 3 + · · ·+ (n+ 1) = (1 + 2 + 3 + · · ·+ n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) by the inductive hypothesis

=
n(n+ 1)

2
+

2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
,

and we have completed the inductive step. Therefore, by the Principle of Mathematical induction,
1 + 2 + 3 + · · ·+ n = n(n+1)

2 for every n ∈ N.

[§1.2: #12] By induction on n ∈ N, we will prove that 0 < xn ≤ xn+1 < 2.

We start with the base case, n = 1. By assumption, 0 < x1 < 2. Moreover, using the recursive
definition of the sequence, x2 =

√
x1 + 2, and

0 < x1 < 2 =⇒ 2 < x1 + 2 < 4 =⇒
√

2 <
√
x1 + 2 < 2;

i.e.,
√

2 < x2 < 2, which ensures that 0 < x2 < 2 as well.

Now we state the inductive hypothesis: For some n ∈ N, assume that 0 < xn ≤ xn+1 < 2.
Therefore,

2 < xn + 2 ≤ xn+1 + 2 < 4 =⇒
√

2 <
√
xn + 2 ≤

√
xn+1 + 2 < 2,

or, in other terms,
√

2 < xn+1 < xn+2 < 2. Since xn+1 >
√

2 certainly ensures that xn+1 > 0, we
conclude that

0 < xn+1 < xn+2 < 2.

Therefore, by the Principle of Mathematical induction, 0 < xn ≤ xn+1 < 2 for every n ∈ N.

[§1.2: #14] By induction on n ∈ N, we will prove that for every n ∈ N, either xn+1 < xn+2 < xn
or xn+1 > xn+2 > xn.

We start with the base case, n = 1. Since x1 = 1 is given, we compute x2 = 1
2 , and then

x3 = 1
(3/2) = 2

3 . Since xn+1 = 1
2 < xn+2 = 2

3 < xn = 1, the statement holds.

Now we state the inductive hypothesis: Assume that for some n ∈ N, either xn+1 < xn+2 < xn
or xn+1 > xn+2 > xn.

In the first case, we have that

xn+1 < xn+2 < xn =⇒ 1 + xn+1 < 1 + xn+2 < 1 + xn =⇒ 1

1 + xn+1
>

1

1 + xn+2
>

1

1 + xn
.

This precisely says that xn+2 > xn+3 > xn+1.

2
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On the other hand,

xn+1 > xn+2 > xn =⇒ 1 + xn+1 > 1 + xn+2 > 1 + xn =⇒ 1

1 + xn+1
<

1

1 + xn+2
<

1

1 + xn
;

i.e., xn+2 < xn+3 < xn+1. In either case, we have completed the inductive step. Therefore, by the
Principle of Mathematical induction, for every n ∈ N, xn+2 is between xn and xn+1.

[§1.3: #8] Assume that x > 0 and y > 0. Then x ≥ 0, y ≥ 0, x 6= 0, and y 6= 0. Applying Axiom
O5 with the statements 0 ≤ x and 0 ≤ y, we have that 0 ≤ y ≤ xy; i.e., xy ≥ 0. Since x 6= 0 and
y 6= 0, we know that xy 6= 0. Therefore, xy > 0.

[§1.3: #9] Suppose that x > 0. Assume, by way of contradiction, that x−1 ≤ 0. Note that
x2 ≥ 0 by Example 1.3.8 (b), and applying Axiom O5 to these two inequalities, we have that

x = x−1 · x2 ≤ 0 · x2 = 0;

i.e., x ≤ 0, a contradiction. Therefore, x−1 > 0.

[§1.3: #10] Assume that 0 < x < y. Then 0 ≤ x ≤ y, so that y ≥ 0 by Axiom O3. Then by
problem #9, we have that x−1 > 0 and y−1 > 0.

Using Axiom O5 applied to x ≤ y and 0 ≤ x−1, we see that xx−1 ≤ yx−1; i.e., 1 ≤ yx−1.
Applying to this inequality and 0 ≤ y−1, we then obtain the inequality y−1 · 1 ≤ y−1(yx−1); i.e.,
y−1 ≤ x−1.

Now, it is enough to show that y−1 6= x−1. By way of contradition, assume that y−1 = x−1 .
Multiplying this equation through by xy, we find that x = (xy)y−1 = (xy)x−1 = y, a contradiction
to our assumption that x < y.

[§1.4: #1] (a) ∅; (b) [1,∞); (c) [2,∞); (d) [1,∞)

[§1.4: #2] (a) no upper bound (supremum is ∞); (b) 1; (c) 2; (d) 1

[§1.4: #3] Suppose that S is a subset of R that is bounded above. By the completeness axiom
of the real numbers, S has a least upper bound ` ∈ R; i.e., s ≤ ` for all s ∈ S, and ` is the smallest
real number with this property. Take any real number N ≥ `. Then for any s ∈ S, s ≤ ` ≤ N , so
that s ≤ N , which means that N is also an upper bound for S. Since no upper bounds are smaller
than `, we conclude that all upper bounds for S are exactly the real numbers in the interval [`,∞).

[§1.4: #10] This is our first proof-writing assignment.

[§1.5: #2] (a) The supremum is 8 (there is no maximum) and the infimum is −2 (which is the
minimum); (b) assuming n ranges through the natural numbers, the supremum is 3/2 (which is
the maximum) and the infimum is zero (although there is no minimum); (a) the supremum is

√
5

(and there is no maximum) and the infimum is −∞ (and there is no minimum).

[§1.5: #7] Suppose that A ⊆ B. We will show that supA ≤ supB, and leave the second
statement to you. First suppose that A is bounded above. Then by the completeness axiom of the
real numbers, A has a least upper bound `, and ` = supA.

We now proceed to show that B cannot have a least upper bound less than ` (so its least
upper bound is some real number greater than `, or ∞). Suppose by way of contradiction that
supB = N < `. Since ` is a least upper bound for A, we k now that N cannot be an upper bound
for A, so there is some element a ∈ A for which a > N . Now, since A ⊆ B, we have that a ∈ B, so
N is not an upper bound for B, a contradiction!

3
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[§1.5: #9] (a) The supremum (and maximum) is 1, and the infimum (and minimum) is zero;
(b) the supremum is ∞ (and there is no maximum, and the infimum (and minimum) is 3; (c) the
supremum is 1 (although there is no maximum), and the infimum (and minimum) is zero.

[§2.1: #1]

(a) We know |x− 5| < 1 if and only if −1 < x− 5 < 1, which holds if and only if 4 < x < 6.

(b) We apply the triangle inequality to find that

|x− y| = |(x− 3) + (3− y)| ≤ |x− 3|+ |3− y| = |x− 3|+ |y − 3| < 1

2
+

1

2
= 1,

and conclude that |x− y| < 1.

(c) Try using the same idea as (b).

[§2.1: #2] Suppose, by way of contradiction, that there is some integer x for which |x− 1| < 1
2

and |x− 2| < 1
2 . The first inequality tells us that −1

2 < x− 1 < 1
2 , so that 1

2 < x < 3
2 ; likewise, by

the second, −1
2 < x− 2 < 1

2 , so that 3
2 < x < 5

2 . In particular, we conclude that x < 3
2 and 3

2 < x,
which is a contradiction.

[§2.1: #3]

(a) 1, 3, 5, . . . , 2n− 1, . . .

(b) 1,−1
2 ,

1
4 , . . . , (−

1
2)n−1, . . .

(c) 1, 12 ,
1
6 , . . . ,

1
n! , . . .

[§2.1: #4] We claim that lim
n→∞

1
n2 = 0. Fix any ε > 0. We need to find N for which∣∣∣∣ 1

n2

∣∣∣∣ < ε whenever n > N.

Let N = 1√
ε
. Then if n > N , we have that∣∣∣∣ 1

n2

∣∣∣∣ =
1

n2
<

1

N2
=

1

(1/
√
ε)2

=
1

1/ε
= ε;

in particular,
∣∣ 1
n2

∣∣ < ε, and we are done.

[§2.1: #5] The limit is 2
3 . We first notice that for any n ∈ N,∣∣∣∣2n− 1

3n+ 1
− 2

3

∣∣∣∣ =

∣∣∣∣6n− 3

9n+ 3
− 6n+ 2

9n+ 3

∣∣∣∣ =

∣∣∣∣6n− 3− (6n+ 2)

9n+ 3

∣∣∣∣ =

∣∣∣∣ −5

9n+ 3

∣∣∣∣ =
5

9n+ 3
<

5

9n
.

Now, fix any ε > 0. If N = 5
9ε and n > N , then we can conclude that∣∣∣∣2n− 1

3n+ 1
− 2

3

∣∣∣∣ < 5

9n
<

5

9N
=

5

9
(

5
9ε

) = ε.

4
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[§2.1: #8] Hint : Multiply the absolute value quantity by
√
n+1+

√
n√

n+1+
√
n

= 1, and bound your

simplified expression by a fraction involving one term in the denominator. One value of N that
works is 1

ε2
.

[§2.1: #11] Suppose that lim
n→∞

an = 0, and take k any constant. We want to show that

lim
n→∞

kan = 0. Fix any ε > 0. Then we need to find a real number N for which

|kan| < ε whenever n > N.

First, consider the real number ε
|k| is positive. Notice that since lim

n→∞
an = 0, there is some real

number M for which
|an| <

ε

|k|
whenever n > M.

Now, let N = |k| ·M . Then if n > M , we have that

|kan| = |k| · |an| < |k| ·
ε

|k|
= ε,

and we are done.

[§2.2: #2] Hint : Notice that n
n2+2

< 1
n for all n ∈ N.

[§2.2: #5] Hint : Try to prove that the limit is 1
2 .

[§2.2: #6] Hint : First find the limit of 1 + 1
n as n → ∞. Then think about the following:

an → L2 and bn → L2, then what value does anbn converge to?

[§2.2: #9] The sequence has no limit; its values range among the set {−1,−1
2 ,

1
2 , 1}, and each

value is achieved infinitely many times. We can show that the sequence has no limit by way of
contradiction: Assume that lim

n→∞
cos(nπ/3) = L for some real number L. Then for ε = 1

2 , there

must be some N for which

| cos(nπ/3)− L| < ε =
1

2
whenever n > N.

Since there exist natural numbers n1, n2 > N for which cos(n1π/3) = 1 and cos(n2π/3) = −1, this
means that

|1− L| < 1

2
and | − 1− L| = |1 + L| < 1

2
.

Therefore, by the triangle inequality,

2 = |(1− L) + (1 + L)| ≤ |1− L|+ |1 + L| ≤ 1

2
+

1

2
= 1;

i.e., 2 < 1, a contradiction.
The sequence has no limit; its values range among the set {−1,−1

2 ,
1
2 , 1}, and each value is

achieved infinitely many times.

[§2.3: #4] Hint : Try bounding | sin(n)| by 1 in your calculation. One valid value for N is N = 1
ε .

[§2.4: #1] (a) non-decreasing; (b) non-increasing and bounded; (c) bounded; (d) non-increasing
and bounded; (e) non-decreasing and bounded

5
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[§2.4: #2] After checking a few values, we might guess that the limit is
√

3. To show that
the sequence converges, we can use induction (as explained in Example 1.2.11) to show that the
sequence satisfies the hypotheses of the Monotone Convergence Theorem: it is non-decreasing (in
fact, it is increasing) and bounded by 1 from below and 2 (or even

√
3) from above.

[§2.4: #3] Hint : Try using induction on n that the sequence satisfies the hypotheses of the
Monotone Convergence Theorem.

[§2.4: #5] Hint : Try applying the Monotone Convergence Theorem. Note what happens when
the limit is not finite!

[§2.4: #8] Fix and real number M . We must find N for which n5+3n3+2
n4−n+1

> M whenever n > N .
First notice that since n− 1 ≥ 0, −(n− 1) ≤ 0, and

n5 + 3n3 + 2

n4 − n+ 1
=
n5 + 3n3 + 2

n4 − (n+ 1)
≥ n5 + 3n3 + 2

n4
≥ n5

n4
= n.

Let N = M . Then if n > N = M , we have that

n5 + 3n3 + 2

n4 − n+ 1
≥ n > N = M,

and we are done.

[§2.4: #9] Hint : First show by induction on n that 2n > n2 for n large enough.

[§2.4: #11] Hint : Let your “new” value for M be the negative of the given one.

[§2.5: #5]

(a) Since any subsequence has infinitely many terms either of the form 2n or (−2)n, no subse-
quence cannot have a finite limit; i.e., no subsequence can converge.

(b) Notice that 5+(−1)nn
2+3n ≤ 5+n

2+3n < 5n+n
3n = 5n

3n = 5
3 , this sequence is bounded, so must have a

convergent subsequence by the Bolzano-Weierstrass theorem.

(c) This sequence alternates between 2−1 = 1
2 and 2, so it has a convergent subsequence consisting

of its odd-indexed, or even-indexed terms. Alternatively, we can notice that since −1 ≤
(−1)n ≤ 1, we have that 1

2 = 2−1 ≤ 2(−1)
n ≤ 21 = 2, so that 1

2 ≤ an ≤ 2. This means that the
sequences is bounded, so it must have a convergent subsequence by the Bolzano-Weierstrass
theorem.

[§2.5: #6] Here, we give one possible subsequence. See if you can find another!

(a) The subsequence consisting of its odd-indexed terms

(b) The subsequence whose indices are multiples of four

(c) The subsequence whose indices are powers of two

[§2.5: #7] To check your answers, we include the final conclusions.

(a) Two values

6
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(b) Four values

(c) Infinitely many values

[§2.5: #8] It must have one, since it is bounded: −1 ≤ sin(n) ≤ 1 by the Bolzano-Weierstrass
Theorem. However, defining such a subsequence is not straightforward! Think about whether you
can construct one.

[§2.5: #9] Hint : Try proving by induction that for any k ≥ 1, |an+k − an| ≤ 2−(n+k). Then
notice that for arbitrary integers n and m, if m ≥ n, then m = n+ k for some k ≥ 0.

[§2.6: #1] (a) lim sup an = 1 and lim sup an = −1; (b) lim sup an = 0 and lim sup an = 0; (c) (a)

lim sup an =
√
3
2 and lim sup an = −

√
3
2

[§2.6: #3] lim sup an = 1 and lim sup an = 0. Make sure to justify these answers with mathe-
matics!

[§2.6: #6] Try going back to the definition of the limit superior. What is the relationship between
the sets we are taking the supremum of in each side of the equality?

[§3.1: #1] The domain will consist of real numbers x for which x2 − 1 ∈ [0, 1], so that 0 ≤
x2 − 1 ≤ 1. Equivalently, 1 ≤ x2 ≤ 2, meaning that 1 ≤ x ≤

√
2 or −

√
2 ≤ x ≤ −1. Thus, the

domain is [−
√

2,−1] ∪ [1,
√

2].

[§3.1: #3] For every real number x, 1
1+x2

is a real number, so the natural domain is R. Now,

take any real number a. We will show that f(x) = 1
1+x2

is continuous at x = a.
Fix ε > 0. We must exhibit δ > 0 for which∣∣∣∣ 1

1 + x2
− 1

1 + a2

∣∣∣∣ < ε whenever |x− a| < δ.

We first simplify the first absolute value:∣∣∣∣ 1

1 + x2
− 1

1 + a2

∣∣∣∣ =

∣∣∣∣ 1 + a2

(1 + x2)(1 + a2)
− 1 + x2

(1 + x2)(1 + a2)

∣∣∣∣ =

∣∣∣∣ a2 − x2

(1 + x2)(1 + a2)

∣∣∣∣ =

∣∣∣∣ (a− x)(a+ x)

(1 + x2)(1 + a2)

∣∣∣∣
=
|x− a||a+ x|

(1 + x2)(1 + a2)

If we impose the restriction that |x− a| < 1, we have that a− 1 < x < a+ 1, so that

• (a− 1)2 < x2 < (a+ 1)2, and 1 + (a− 1)2 < 1 + x2 < 1 + (a+ 1)2, and

• 2a− 1 < a+ x < 2a+ 1, so |x+ a| < |2a+ 1|.

Therefore, we have that∣∣∣∣ 1

1 + x2
− 1

1 + a2

∣∣∣∣ =
|x− a||a+ x|

(1 + x2)(1 + a2)
<

|x− a||a+ x|
(1 + (a− 1)2) (1 + a2)

<
|x− a||2a+ 1|

(1 + (a− 1)2) (1 + a2)

If we further impose the restriction that |x− a| < (1+(a−1)2)(1+a2)
|2a+1|ε , then we can conclude that

∣∣∣∣ 1

1 + x2
− 1

1 + a2

∣∣∣∣ < |x− a||2a+ 1|
(1 + (a− 1)2) (1 + a2)

<

(1+(a−1)2)(1+a2)
|2a+1| |2a+ 1|ε

(1 + (a− 1)2) (1 + a2)
= ε.

7
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Therefore, if δ = min{1, (1+(a−1)2)(1+a2)
|2a+1|ε }, then

∣∣∣ 1
1+x2

− 1
1+a2

∣∣∣ < ε. We can conclude that f(x) =
1

1+x2
is continuous on its natural domain.

[§3.1: #4] Hint : Write out the absolute values that appear in the definition of continuity, and
apply the second part of the triangle inequality.

[§3.1: #8] Please see your notes from class on Tuesday, February 21.

[§3.1: #9] It is not continuous on domain R, is continuous on the domain of all non-negative
real numbers, but is not continuous on the domain of all non-positive numbers. To show that it is
not continuous on the appropriate domains, try using ε = 2 or smaller.

[§3.2: #1] The graph of this function is an upward-facing parabola, with x-intercepts 0 and
2. The minimum value is achieved at the bottom of the parabola, when x = 1: f(1) = −1. The
function has no maximum value – its values increase as x→ 3.

[§3.2: #4] For the first parts, consider f(x) = 3 on R, or g(x) = 1
x on [1,∞). For the second,

consider g(x) = 1
x on the bounded interval (0, 1). Make sure to find some examples of your own as

well!

[§3.2: #7] Try constructing a piecewise function that is discontinuous at a point in [0, 1], and
satisfies the requirement. For example, what value(s) between f(0) and f(1) does the following
function not take on?

f(x) =

{
−1 if 0 ≤ x ≤ 1

2

1 if 1
2 < x ≤ 1

[§3.2: #9] We will apply the IVT to the function g(x) = f(x)− x, with a = 0 and b = 1. Notice
that g(0) = f(0)− 0 = f(0) and g(1) = f(1)− 1. Since the values of f are in the interval [0, 1], we
can conclude that

g(0) = f(0) and g(1) = f(1)− 1 ≤ 1− 1 = 0.

Therefore, y = 0 is between g(0) and g(1); i.e., g(1) ≤ 0 ≤ g(0). By the IVT, there is some value
c ∈ [0, 1] for which g(c) = y = 0. This means f(c)− c = 0, or f(c) = c.

[§3.2: #11] Let f be a polynomial of odd degree. Note that either

lim
n→∞

f(n) =∞ and lim
n→∞

f(−n) = −∞

or
lim
n→∞

f(n) = −∞ and lim
n→∞

f(−n) =∞

(Think about the graph of f !)
In the first case, we know that for some N , if n > N , then f(N) > 0, and for some N ′, if

n > N ′, then f(−N ′) < 0. By the IVT, since f(N ′) < 0 < f(N), there is some −N ′ < c < N for
which f(c) = 0.

What happens in the second case?

[§3.3: #1] Yes, it is uniformly continuous on (0, 1). Fix ε > 0 and 0 < x, a < 1. Then

|f(x)− f(a)| = |x2 − a2| = |x− a| · |x+ a| = |x− a| · (x+ a) < 2|x− a|.

Then if |x− a| < ε
2 , |f(x)− f(a)| = 2|x− a| < 2 ·

(
ε
2

)
= ε.

8
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[§3.3: #2] No, it is not uniformly continuous on (0, 1). Fix ε = 1. For any 1 > δ > 0, fix
0 < a < δ, and let x = a

2 , so that 0 < x < a < δ. Then |x− a| < δ, and∣∣∣∣ 1

x2
− 1

a2

∣∣∣∣ =
1

x2
− 1

a2
=

1

(a/2)2
− 1

a2
=

4

a2
− 1

a2
=

3

a2
>

3

12
= 3 > 1 = ε.

[§3.3: #3] No, it is not uniformly continuous on (0,∞). Fix ε = 1. For any δ > 0, fix x > 2
δ . If

a = x+ δ
2 , then |x− a| = δ

2 < δ. However,

|x2 − a2| = |x− a| · |x+ a| = δ

2
· |x+ a| = δ

2
· (x+ a) >

δ

2
· x > δ

2
· 2

δ
= 1;

i.e, |x2 − a2| > 1 = ε.

[§3.3: #4] Fix any ε > 0 and x, a > 0. Let δ = ε and suppose that |x − a| < δ. Since
x+ 1, a+ 1 > 0,∣∣∣∣ x

x+ 1
− a

a+ 1

∣∣∣∣ =

∣∣∣∣x(a+ 1)− a(x+ 1)

(x+ 1)(a+ 1)

∣∣∣∣ =
|x− a|

(x+ 1)(a+ 1)
<
|x− a|

1 · 1
< δ = ε.

[§3.3: #5] We proved in class that
√
x is continuous on [1,∞). Since

√
x is continuous on

the closed, bounded interval [0, 2], it is uniformly continuous on this interval by a theorem in the
section. Now, given ε > 0, we can take δ to be the minimum of the two values that ensure uniform
continuity on each of these intervals.

[§3.4: #1] Take any closed interval [a, b]. To show that {xn} converges uniformly to 0 on this
interval, fix ε > 0. We need to find N for which

|fn(x)− 0| = |fn(x)| < ε whenever n > N and a ≤ x ≤ b.

Now,

|fn(x)| =
∣∣∣x
n

∣∣∣ =
|x|
n
<
|b|
n

so if N = |b|
ε , then if n > N , we have that

|fn(x)| < |b|
n
<
|b|
N

=
|b|(
|b|
ε

) = ε.

On the other hand, we will now show that {xn} does not converge uniformly to 0 on R: Fix
ε = 1. Then for any N > 0, if we choose x = N + 1, we have that

|fn(x)− 0| =
∣∣∣x
n

∣∣∣ =
|x|
n

=
N + 1

n
.

Thus, if we choose n = N + 1 > N , then

|fn(x)− 0| = N + 1

n
=
N + 1

N + 1
= 1 = ε,

so it is not true that |fn(x)− 0| < ε.

9
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[§3.4: #2] Fix any ε > 0. We need to find N for which

| 1

x2 + n
− 0| = 1

x2 + n
< ε whenever n > N and x ∈ R.

Notice that for any x ∈ R, x2 ≥ 0, so that

1

x2 + n
≤ 1

n
.

Thus, if N = 1
ε , then for any x ∈ R, if n > N ,

| 1

x2 + n
− 0| = 1

x2 + n
≤ 1

n
<

1

N
=

1(
1
ε

) = ε.

[§3.4: #4] Hint : Apply Theorem 3.4.6.

[§3.4: #5] Hint : Use the book’s hint to bound the values of the function for all values of x.

[§4.1: #1] The limit is 2. Since for all x 6= 1 (i.e., on the interval R \ {1}), x2−1
x−1 = x + 1, we

have that

lim
x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1) = 1 + 1 = 2,

Since the function y = x+ 1 is a polynomial, so is continuous on R.

[§4.1: #3] The limit is 4. Hint : Try following the same process as #1.

[§4.1: #6] The limit equals 1
2 . Try proving two ways: (1) Using the δ− ε definition of limit, and

(2) Applying the Main Limit Theorems.

[§4.1: #8] No, neither limit exists.

[§4.1: #14] Suppose that f is a function defined on an open interval (a, b). We say that
lim
x→b−

f(x) = −∞ if

[§4.2: #1] First, notice that the domain of f(x) = 1
x is (∞, 0) ∪ (0,∞). We find the formula for

the derivative function on each of these two open intervals, so on their union: If a 6= 0, then

f ′(a) = lim
x→a

(
1
x −

1
a

)
x− a

= lim
x→a

(
a−x
xa

)
x− a

= lim
x→a

−1

xa
= − 1

a2
,

where the last equality holds since for any a 6= 0, the function y = −1
xa is continuous at a, so this

limit equals this function’s value at a. Thus, d
dx

(
1
x

)
= − 1

x2
for all x 6= 0.

[§4.2: #2] Try using either definition of the derivative, and doing a lot of algebra!

[§4.2: #11] Hint : Try #12 first, to get the basic idea. For the second part, you might want to
(eventually) try showing that lim

x→0
x sin(1/x) = 0 using the δ − ε definition of a limit.

[§4.2: #12] We find

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x2 − 0

x− 0
= lim

x→0+

x2

x
,

10
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which equals lim
x→0+

x = 0 since the function y = x2

x agrees with the function y = x for all x 6= 0. On

the other hand,

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0+

0− 0

x− 0
= lim

x→0+
0 = 0.

Since these limits equal the same, finite, number zero, we know that f is differentiable at zero and
f ′(0) = 0.

[§4.3: #1] Hint : Try applying the MVT on the intervals (−1, 0), (−1, 1), and (0, 1).

[§4.3: #2] Hint : Try apply the MVT to the function f(x) = sinx, and use the fact that
f ′(x) = cosx is bounded in absolute value by 1.

[§4.3: #7] Hint : Find the points where the given function has a zero derivative.

[§4.3: #8] Hint : Find the points where the given function has a zero derivative.

[§4.4: #1] Using Cauchy’s MVT with f(x) and g(x) as indicated on the interval (1, x) for a fixed
x, we know that there exists c > 1 for which

1

rcr
=

(
1
c

)
rcr−1

=
f ′(c)

g′(c)
=

ln(x)− ln(1)

xr − 1r
=

lnx

xr − 1
.

Therefore, lnx = xr−1
rcr ≤

xr−1
r , where the last statement holds because c > 1, so that cr > 1r = 1.

[§4.4: #6] The limit equals zero.

[§4.4: #7] The limit equals zero. Hint : Write x lnx = lnx
1/x .

[§4.4: #11] The limit equals one. Hint : First find lim
x→∞

ln(x1/x) = lim
x→∞

1
x ln(x). Then use your

answer to find the limit in question.

[§4.4: #13] The limit equals zero Hint : The values agree with the function y = lnx√
x

for x > 0.

[§5.1: #1] If there are four subintervals, then their length is each xk−xk−1 = 1
4 , so the partition

is:

P =

{
1 <

5

4
<

3

2
<

7

4
< 2

}
Moreover, since the function is decreasing on this interval, the lower sum chooses x̄k = xk, and the
upper sum chooses x̄k = xk−1. Therefore, the lower sum and upper sum are:

L(f, P ) =
4

5
· 1

4
+

2

3
· 1

4
+

4

7
· 1

4
+

1

2
· 1

4
=

533

840

U(f, P ) = 1 · 1

4
+

4

5
· 1

4
+

2

3
· 1

4
+

4

7
· 1

4
=

319

420
.

[§5.1: #2] Given the partition noted, we have that xk = k
n and xk−xk−1 = 1

n . Since f(x) = x is

increasing, x̄k = xk−1 = k−1
n for the lower sum, and x̄k = xk = k

n for the upper sum. In each case,

11
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f(x̄k) = x̄k. Therefore,

L(f, Pn) =

n∑
k=1

k − 1

n
· 1

n
=

1

n2

n∑
k=1

(k − 1) =
1

n2
· (n− 1)n

2
=
n− 1

2n
, and

U(f, Pn) =
n∑
k=1

k

n
· 1

n
=

1

n2

n∑
k=1

k =
1

n2
· n(n+ 1)

2
=
n+ 1

2n
.

Thus,

lim
n→∞

(U(f, Pn)− L(f, Pn)) = lim
n→∞

2

2n
= 0.

Therefore, by Theorem 5.1.8,∫ 1

0
x dx = lim

n→∞
U(f, Pn) = lim

n→∞

n+ 1

2n
=

1

2
.

[§5.1: #4] We will use the result from #3. Notice we can choose the partition on [0, a] with n
subintervals of equal length, a

n ; i.e., xk = ak
n for 1 ≤ k ≤ n. Since the function is increasing on this

interval, x̄k = xk = ak
n for the upper sum, and x̄k = xk−1 = a(k−1)

n for the lower sum. Now, by #3,

U(f, Pn) =
n∑
k=1

(
ak

n

)2

· a
n

=
a3

n3

n∑
k=1

k2 =
a3

n3
· n(n+ 1)(2n+ 1)

6
, and

L(f, Pn) =
n∑
k=1

(
a(k − 1)

n

)2

· a
n

=
a3

n3

n∑
k=1

(k − 1)2) =
a3

n3
·
(
n(n+ 1)(2n+ 1)

6
− n2

)
.

Therefore,

lim
n→∞

(U(f, Pn)− L(f, Pn)) = lim
n→∞

(
a3

n3
· n2
)

= lim
n→∞

a3

n
= 0.

Then by Theorem 5.1.8,∫ a

0
x2 dx = lim

n→∞
U(f, Pn) = lim

n→∞

a3(n+ 1)(2n+ 1)

6n2
=

2a3

6
=
a3

3
.

[§5.1: #5] The answer is no! Hint : Try showing that for any partition, Mk = 1 and mk = 0
always.

[§5.1: #8] Hint : Try using the most “boring” partition of [a, b] possible: P = {a = x0 < x1 = b}.

[§5.2: #1] Hint : Try applying Theorem 5.2.1 to each of g and h, and then applying Theorem
5.2.3(b).

[§5.2: #4] Hint : Try applying Theorem 5.2.4 to the inequalities

f(x) ≤ sup
[a,b]

(f) and inf
[a,b]

(f) ≤ f(x),

which hold for x ∈ [a, b].

[§5.2: #6] The function f(x) = 1
1+x2n

is continuous on the interval [−1, 1], and

f ′(x) = −(1 + x2n)−2 · (2n)x2n−1 = −2nx2n−1

1 + x2n
,

12
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so the only critical point is x = 0. Since f(0) = 1, f(−1) = 1
2 , and f(1) = 1

2 , sup[−1,1](f) = 1 and

inf [−1,1](f) = 1
2 . Then the result follows from applying Corollary 5.2.5.

[§5.2: #11] For example, the piecewise function f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

.

[§5.2: #12] Hint : Suppose that f achieves its maximum value at x1, and its minimum value

at x2. Apply the Mean Value Theorem to f and y = 1
b−1

∫ b
a f(x) dx on the interval [x1, x2]. Make

sure to note that Corollary 5.2.5 is needed to apply the MVT.

[§5.3: #2] By the Second Fundamental Theorem of Calculus, on any closed interval [b, c] for
which b > 0, this derivative equals cos(1/x). For every x > 0, there exist b and c for which
b < x < c. This means that the derivative equals cos(1/x) for all x > 0.

[§5.3: #3] If F (x) =
∫ x
0 sin(t2) dt, then we know by the Second FTC that F ′(x) = sin(x2). Since∫ 2x

0 sin(t2) dt = F (g(x)), where g(x) = 2x, by the chain rule,

d

dx

(∫ 2x

0
sin(t2) dt

)
= F ′(g(x)) · g′(x) = F ′(2x) · 2 = 2 sin((2x)2) = 2 sin(4x2).

[§5.3: #4] Hint : Try writing
∫ x
1/x e

−t2 dt as∫ x

0
e−t

2
dt−

∫ 1/x

0
e−t

2
dt,

and for the second term, use a method similar to #3; i.e., try writing it as a composition of two
functions that you know the derivative of, and apply the chain rule.

[§5.3: #5] The problem is that f is not integrable on [−1, 1] (or even [0, 1] or [−1, 0]) since it is
not bounded there.

[§5.3: #10] The problem is that f is not differentiable on the open interval (−1, 1). To rectify
this, we can notice that f is integrable on both the interval (−1, 0) and the interval (0, 1), so the
intervals [−1, 0] and [0, 1] apply to the First FTC, and we find that∫ 0

−1
f ′(x) dx = f(0)− f(−1) = |0| − | − 1| = −1, and∫ 1

0
f ′(x) dx = f(1)− f(0) = |1| − |0| = 1,

so that we can conclude the (correct) statement, that∫ 1

−1
f ′(x) dx =

∫ 0

−1
f ′(x) dx+

∫ 1

0
f ′(x) dx = −1 + 1 = 0.

[§5.3: #6] The answer is 1
2(f(b))2 − (f(a))2). Hint : Apply integration by parts.

[§5.3: #11] We have five cases, a < c < b, b < a < c, b < c < a, c < a < b, and c < b < a. For
each, we want to show that: ∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.

13
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For the first, since a < c < b, we know that∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

But then ∫ c

a
f(x) dx =

∫ b

a
f(x) dx−

∫ b

c
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.

Proceed similarly for the other cases.

[§5.3: #12] Hint : When a < b, apply Corollary 5.2.5. When b < a, write
∫ b
a f(x) dx as

−
∫ a
b f(x) dx, and apply the same Corollary. When a = b, think about what the statement says.

[§5.4: #1] Notice that
d

dx
(ln(xr)) =

1

xr
· rxr−1 =

r

x
,

so that r lnx and ln(xr) are both antiderivatives of r
x . Therefore,

r lnx = ln(xr) + C

for some constant C. Taking x = 1 in this equation, we find that

0 = r · 0 = 0 + C,

so that C = 0, and r ln(x) = ln(xr) for all x; in particular, this holds for x = a.

[§5.4: #2] Hint : For any a > 0, take the derivative of ln(a/x), and apply a similar method to
#1 or Theorem 5.4.2.

[§5.4: #4] Let x = exp a, so that a = lnx. If we can show that ln(exp(ra)) = ln((exp(a))r), then
applying exp to both sides, we get that

exp(ra) = exp(ln(exp(ra))) = exp(ln((exp(a))r)) = (exp(a))r).

This holds, since

ln(exp(ra)) = ra = r lnx = ln(xr) = ln((exp(a))r).

[§5.4: #5] We will show the first, and leave the second to you. By the definition of ax,

ax+y = exp((x+ y) ln a) = exp(x ln a+ y ln a) = exp(ln(ax) + ln(ay)) = exp(ln(axay)) = axay.

[§5.4: #6] Hint : Check that loga(x) and ax are inverses, and then differentiate loga(a
x) = x as

in Theorem 5.4.6.

[§5.4: #10] We did #9 in class; follow a similar process. The final answer is that the integral
converges if and only if p < 1.

[§5.4: #11] We write∫ ∞
−∞

sinx

1 + x2
dx =

∫ 0

−∞

sinx

1 + x2
dx+

∫ ∞
0

sinx

1 + x2
dx

= lim
a→−∞

∫ 0

a

sinx

1 + x2
dx+ lim

b→∞

∫ b

0

sinx

1 + x2
dx,

14
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and since by Theorem 5.3.6, on any finite interval [a, b],∣∣∣∣∫ b

a

sinx

1 + x2
dx

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣ sinx

1 + x2

∣∣∣∣ dx,
and since | sinx

1+x2
| ≤ 1

1+x2
,∫ ∞

−∞

sinx

1 + x2
dx ≤ lim

a→−∞

∫ 0

a

1

1 + x2
dx+ lim

b→∞

∫ b

0

1

1 + x2
dx

= lim
a→−∞

(arctan(a)− arctan(0))− lim
b→∞

(arctan(b)− arctan(0))

= (π/2− 0)− (0− π/2) = π.

[§5.4: #13] We write∫ ∞
−∞

f(x) dx =

∫ 0

−∞
f(x) dx+

∫ ∞
0

f(x) dx

= lim
a→−∞

∫ 0

a
f(x) dx+ lim

b→∞

∫ b

0
f(x) dx.

Since f(x) ≤ g(x), for all a, b ∈ R,
∫ 0
a f(x) dx ≤

∫ 0
a g(x) dx and

∫ b
0 f(x) dx ≤

∫ b
0 g(x) dx. Therefore,

by the Main Limit Theorem,

lim
a→−∞

∫ 0

a
f(x) dx ≤ lim

a→−∞

∫ 0

a
g(x) dx, and

lim
b→∞

∫ b

0
f(x) dx ≤ lim

b→∞

∫ b

0
g(x) dx.

From here, if a left-hand limit not exists or equals ∞, then what happens to the corresponding
right-hand limit?

[§6.1: #2] This converges by the Comparison Test, comparing each term with 1
2n , whose series

converges since it is geometric and r = 1
2 .

[§6.1: #5] In a similar method to Example 6.1.12, we can show that there exists N for which
k2

4k/2
< 1 whenever k > N . Then k2

4k/2
< 4k/2

4k
= 1√

4
k , and a series with the latter terms converge

since it is geometric and r = 1
4 .

[§6.1: #11] Hint : Follow the proof of Theorem 6.1.9, but simplify it by disregarding M and K.

[§6.2: #1] This series diverges by the Integral Test.

[§6.2: #4] The series converges by the Ratio Test.

[§6.2: #9] Hint : Try graphing the functions g(x) and g(x + 1), and thinking carefully about
Riemann sums.

[§6.2: #12] Suppose that ak = bk for all k > N . Let sn = a1 + a2 + . . . + an denote the nth

partial sum for
∞∑
k=1

ak, and let tn = b1 + b2 + . . . + bn denote the nth partial sum for
∞∑
k=1

bk. Then
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for n > N ,

sn − tn = (a1 + a2 + · · ·+ aN + aN+1 + · · ·+ an)− (b1 + b2 + · · ·+ bN + bN+1 + · · ·+ bn)

= (a1 + a2 + · · ·+ aN )− (b1 + b2 + · · ·+ bN )

= sN − tN ,

and sN − tN is a constant. Therefore, lim
n→∞

(sn − tn) = 0.

If
∞∑
k=1

ak converges, then for some real number s, limn→∞ sn = s, so that

0 = lim
n→∞

(sn − tn) = s− lim
n→∞

tn,

i.e., lim
n→∞

tn = s, and
∞∑
k=1

bk also converges.

On the other hand, if
∞∑
k=1

ak diverges, then {sn} has no finite limit, so that

lim
n→∞

tn = lim
n→∞

tn + (sn − tn) = lim
n→∞

sn

also does not exist, and
∞∑
k=1

bk diverges as well.

Since we can switch the roles of an and bn, we are done.

[§6.3: #4] Diverges since its terms do not approach zero (try dividing the numerator and
denominator by 2k).

[§6.3: #5] Converges by the Alternating Series Test; not absolutely convergent by comparison
test (what comparison series can you use?).

[§6.3: #6] For example, ak = bk = (−1)k 1√
k
. Try finding another pair!

[§6.3: #7] Suppose that
∞∑
k=1

ak converges to s.

Notice that the series in question consist of all positive terms, or negative terms, respectively.

Suppose, by way of contradiction, suppose that
∞∑
k=1

a+k converges to a real number t. In this case,

∞∑
k=1

a−k must converge, since

∞∑
k=1

a−k =
∞∑
k=1

ak −
∞∑
k=1

a+k = s− t.

Suppose it converges to the real number r. However, |ak + | = ak if ak > 0 and |ak| = −ak if k < 0,
so that

∞∑
k=1

|ak| =
∞∑
k=1

a+k −
∞∑
k=1

a−k = t− r

would also converge, contradicting the fact that the original series converges absolutely. Therefore,

we can conclude that
∞∑
k=1

a+k s diverges. Than a symmetric argument will show the same for
∞∑
k=1

a−k .
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[§6.3: #9] To check your method, the answer begins:

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
− 1

4
+

1

15
+ · · ·

but we need more terms! Here, we continue adding positive terms so that the partial sum is within
1
n of

√
2; i.e., pick m so that

√
2 < sm <

√
2 + 1

n , and then adding the next negative term.

[§6.4: #1] On the interval [−1, 1],
∣∣∣xkk2 ∣∣∣ = |x|k

k2
≤ 1

k2
converges. Since

∑∞
k=1

1
k2

, we can use

Mk = 1
k2

in the Weierstrass M -test to conclude that the original series converges uniformly on

[−1, 1]; therefore, it is continuous by Theorem 6.4.2 since each functino fn(x) = xk

k2
is a polynomial,

so is continuous on this interval.

[§6.4: #2] Hint : Use the same idea as #1, but with Mk = 1
2k

.

[§6.4: #10] By the Alternating Series Test, for each x ∈ [0, 1], the series of partial sums

gn(x) =
n∑
k=0

(−1)k+1akx
k converges to the value g(x) =

∑∞
k=0−1)k+1akx

k since the sequence {akxk}

is non-increasing (since {xk} is, and ak ≥ 0) and consists of non-negative numbers (since ak ≥ 0).
Moreover, |akxk| − akxk ≤ ak for all k ≥ 0 if x ∈ [0, 1], and since {ak} is non-increasing, the series
converges uniformly to g(x) on [0, 1] by the Weierstrass M -test. Then the continuity of g(x) on
[0, 1] follows from Theorem 6.4.2.
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