
MATH 500 Update
Fall 2023

Week 16 December 4–8

Read §5.2, 5.3

Homework §5.3: 1–6, 10–12

Monday Today we stated the fact that if f is either monotone or continuous on [a, b], then
is is integrable on [a, b], and proved the remaining part–the case that f is contin-
uous. Next, we stated the linearity of the integral, and proved, using old theorems
on sups and infs (!) that one can “pull out” scalars. Finally, we stated the first
fundamental theorem of calculus (FTC I), and showed an example of a function
that is differentiable on [a, b] but its derivative is not continuous on [a, b].

Wednesday Today we proved the first fundamental theorem of calculus. Next, we stated the
second fundamental theorem of calculus, used it in an example, and then proved
it. Thanks for a great semester!

Friday Stop Day

Week 15 November 17–December 1

Read §5.1, 5.2

Homework §5.1: 1–3, 4—9; §5.2: 1

Monday Today we recalled the definition of a partition of a closed interval, a Riemann
sum of a bounded function on the interval, and the upper and lower sums of the
function on the interval with respect to such a partition. We stated a theorem and
proved a corollary, both comparing upper and lower sums of different partitions.
Finally, we defined the upper and lower integrals, and what it means for a function
to be differentiable on a lower interval.

Wednesday We started class by reviewing the definition of a partition of a closed interval,
and the upper and lower sums of a bounded function on the interval with respect
to such a partition. The we proved the theorem from last time in the case that
the refinement of the partition has only one extra element. We used the theorem
to prove a theorem stating that a function is integrable if and only if there is a
partition for which the upper and lower sums are as close as desired. Finally, we
stated a theorem characterizing integrability in terms of sequences of partitions.

Friday After our last quiz–Quiz 10–on integration, we stated two theorems from last
time, and used the first to prove the second, characterizing integrability using
sequences of partitions. We used the theorem to show that x2 is integrable on the
unit interval, and computed its integral. Next, we stated and proved the fact that
any monotone function on a closed interval is integrable there, and stated the fact
that any continuous function on a closed interval is also integrable on the interval.



Week 14 November 20–24

Read §4.3, 5.1

Homework §4.3: 6–10; 5.1: 1, 3, 6

Monday Today we derived some additional consequences of the MVT, on the derivative
of f and its relation to the increasing/decreasing nature of f . Next, we started
Chapter 5 on Integrals. We started by defining a partition of a closed interval,
and a Riemann sum of a bounded function on the interval with respect to such
a partition. We used this to define the upper and lower sum of a function on an
interval, with respect to a given partition.

Wednesday Thanksgiving Break

Friday Thanksgiving Break

Week 13 November 13–17

Read §4.2, 4.3, 5.1

Homework §4.2: 4, 6–8, 10; 4.3: 1–4

Monday Today we recalled the definition of the derivative of a function at a point. We
proved that sinx is differentiable at every real number, so that our theorem from
last time says it is also continuous everywhere. Next, we stated and proved a theo-
rem stating linearity property of derivatives, along with the product and quotient
rule. Finally, we stated the Chain Rule, which has several important hypotheses.

Wednesday We started class with Quiz 9 on differentiation. Next, we recalled the Chain Rule,
and used it to establish the formula for the derivative of an inverse function. We
used this formula to re-derive the formula for the derivative for arcsinx.

Friday Today, we defined critical points of a function on a closed interval, and proved
that if the function attains a minimum or maximum at a point in that interval,
it must be a critical point. Then we used this results to prove the Mean Value
Theorem (MVT) relating the derivative of a function to the slope of the secant
line to a function between two points in its domain. We used the MVT to find an
easy proof of the familiar statement that if the derivative of a function is zero on
an open interval, the function must be constant!



Week 12 November 6–10

Read §4.1, 4.2

Homework §4.1: 1–10, 15; §4.2: 1–3, 9

Monday Today, we defined what it means for a function f defined on an open interval,
except possibly a point a in the interval, to have limit L as x approaches a, i.e.,
lim
x→a

f(x) = L. This was very similar to our definition of limits of sequences. We

went through several examples, and then defined limits from the right and from
the left, which includes limits as x → ±∞. We related the definitions, in that
lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L = lim
x→a−

f(x). We practiced using

these definitions.

Wednesday Today we recalled the definition of f(x) as x approaches a real number, and saw
that if f(x) is defined on an open interval containing a ∈ R, then f is continuous
at a if and only if lim

x→a
f(x) = f(a). We also recalled the definitions of one-sided

limits, which includes approaching ∞ (from the left) and −∞ (from the right).
After this, we completed a δ − ϵ proof of a limit. Next, we stated the sequential
characterization of limits of functions, and the Main Limit Theorem for Functions.

Friday After taking Quiz 8 on limits of functions, we defined the derivative of a function
at a point in an open interval of its domain, if it exists. We did several examples
of comping the derivative of functions. Finally, we proved that if a function is
differentiable at a point, it must also be continuous at the point.

Week 11 October 30–November 3

Read §3.4, 4.1

Homework §3.4: 4–8

Monday We recalled what it means for a sequence of functions on a domain to converge
pointwise to a function with the same domain, and to converge uniformly to the
function. We proved that {(sinx)/n} converges uniformly to f(x) = 0 on the
entire real line, and proved that the sequence given by fn(x) = xn does not con-
verge uniformly to its pointwise limit, the piecewise function f(x) = 0 if x < 0,
and f(1) = 1. Then we stated and proved an important theorem that replaces the
previous proof: If {fn} is a sequence of functions, all continuous on a domain D,
then if the sequence converges uniformly to f on D, f must also be continuous
on D.

Wednesday Today, we used the theorem stated at the end of class on Monday, and two more,
as tests for uniform convergence. We did several examples concluding that s se-
quence of functions converges uniformly, or does not, to its pointwise limit.

Friday Today was Midterm 2.



Week 10 October 23–27

Read §3.3, 3.4

Homework §3.2: 7, 11; §3.3: 1–6; §3.4: 1, 2

Monday We started by recalling the Intermediate Value Theorem (IVT), and using it to
prove that the image of a function defined and continuous on a closed, bounded
interval is again a closed, bounded interval. We also used the IVT to prove the
existence of zeros of a function on an interval. Next, we defined the notion of
uniform continuity on a subset of the domain of a function. We noticed that if
a function is uniformly continuous on D ⊆ R, then it is continuous on D. We
looked at the function f(x) = 1

x , and guessed that it is not uniformly continuous
on (0, 1], and proved that it is uniformly continuous on [2, 3].

Wednesday Today, we started with Quiz 7 on the Intermediate Value Theorem. Then we an-
nounced that Midterm 2 is shifted to Friday, November 3, and Group Project
3 on uniform convergence was assigned, due on Wednesday, November
1. After this, we recalled the definition of uniform continuity. We proved that
f(x) = x2 is not uniformly continuous on [0,∞)], but is uniformly continuous on
[0, 10, 000, 000]. Then we stated a powerful theorem saying that if f is a function
that is defined and continuous on a closed, bounded interval, then it is uniformly
continuous on that interval.

Friday Today we started by proving that a function that is continuous on a closed,
bounded interval is uniformly continuous on the interval. Next, we introduced
the notion of a sequence of functions {fn} on some domain D ⊆ R, and defined
what it means for such a sequence to converge pointwise on D to some function
f with domain D, and to converge uniformly to f . We started looking at several
examples to gather intuition on these notions.



Week 9 October 16–20

Read §3.2, 3.3

Homework §3.2: 2, 4–6, 8–10

Monday Fall Break!

Wednesday Today, we prove that a function that is defined on a closed, bounded interval is
bounded on the interval, and attains a minimum and maximum value on the in-
terval. This required us to recall the definition of what it means for a function to
be bounded on a subset of its domain, and the supremum/infimum of a function
on a subset of its domain. In the proof, we applied the Bolzano Weierstrass the-
orem, the sequential characterization of continuity, and the fact that a limit of a
convergent sequence coming from a closed, bounded interval is itself in the in-
terval. Next, we stated a theorem that the image of a function that is defined and
continuous on a closed, bounded interval is again a closed, bounded interval! We
will need the Intermediate Value Theorem to prove this next time.

Friday Today, we took Quiz 6 on monotone sequences and infinite limits. Then we stated
and proved the Intermediate Value Theorem. We noticed why the hypotheses are
necessary, and stressed that memorizing the hypotheses of named theorems from
now one will be very useful, so that we can check easily and accurately whether
they apply so that we can take advantage of them.



Week 8 October 9–13

Read §3.2

Homework §3.1: 3–7, 8, 9, 11, 12; §3.2: 1, 3, 5

Monday We started class by handing out Group Project 3 on Cauchy sequences, which is
due Wednesday 10/18 Friday 10/20 (extended due to Fall Break. Try to take at least
some of your break to rest and recharge!). Next we reviewed the δ−ε definition of
what it means for a function to be continuous at a point a in its domain. We went
through several examples in details. Then we stated that a function is continuous
on a domain D if it is continuous at every point a in D. We proved that f(x) = x2

is continuous on R, and started proving that h(x) = 1
x is continuous on R \ {0},

which we will finish next time.

Wednesday We started where we left off last time, and proved that f(x) = 1
x is continuous

on the domain (0,∞). As an exercise, you can prove that it is continuous on
(−∞, 0) as well, so that it is continuous on its entire natural domain! After this,
we stated an alternate characterization of continuity in terms of sequences. We
used this characterization, along with the Main Limit Theorem for sequences, to
prove that if f and g are both continuous at a point a in both their domains, then
cf is continuous at a for any c ∈ R, f + g and fg are both continuous at a, and
if g(a) ̸= 0, then f/g is also. After this, we stated the fact that if r is a positive
rational number, then f(x) = xr is continuous on its natural domain (which
depends on the denominator of r when written in lowest terms!) For practice for
the quiz on Friday, try proving this!

Friday We started class by taking Quiz 5 on continuity. After this, we reviewed the se-
quential definition of continuity, the theorems on continuous functions that can
be proved using this characterization (stated last time). We saw that these state-
ments imply that any polynomial is continuous on its domain of all real numbers.
Next, we proved, again using the sequential characterization of continuity, that
the composition of continuous functions is continuous at a point in its domain, as
long as specific continuity assumptions are satisfied for each function. We proved
that a complicated function is continuous on its natural domain using this theo-
rem, and the ones recalled earlier today. Finally, we defined what it means for a
function to be bounded above/below on a subset of its domain, and the supremum
and infimum of the function on such a subset. We stated the theorem that if f is
defined and continuous on a closed, bounded interval, then it is bounded on the
interval, and achieves both a minimum and maximum value on the interval.



Week 7 October 2–6

Read §2.5, 3.1

Homework §2.5: 1–2, 4–8, 9–11; 3.1: 1–2

Monday We started by reviewing the Monotone Convergence Theorem (MCT) and the defi-
nition of an infinite limit, and the following corollary of the MCT: Every monotone
sequence has a limit, which may be either a real number or ±∞. Next, we stated
several properties and used them to prove that certain sequences have limit ∞. In
doing so, we also proved that if a > 0 is a real number, then na → ∞. Finally,
we defined a closed, bounded interval, and a nested sequence of closed bounded
intervals. Then we stated the Nested Interval Property (NIP) that the intersection
of a nested sequence of closed, bounded intervals is nonempty.

Wednesday Today, we recalled the Nested Interval Property, and went over an example and a
non-example. We proved the property using the MCT on the sequences of lower
and upper endpoints of the intervals. We then defined a subsequence of a se-
quence, with examples, and stated the Bolzano Weierstrass (BW) theorem, which
says that every bounded sequence has a convergent subsequence! We gave an-
other example, an gave the idea for the fact that if a sequence has a (possibly
infinite) limit, every subsequence also has this limit. We proved BW using the
NIP. Finally, we defined a Cauchy sequence, and stated a theorem staying that a
sequence is Cauchy if and only if it converges. We proved one direction of this the-
orem: every convergent sequence is Cauchy. Next time we will start by proving
the other direction.

Friday We started class by reviewing the definition of a Cauchy sequence, and finishing
the proof that a sequence is Cauchy if and only if it converges. We went through
an example of showing that a sequence is Cauchy, so therefore converges, though
it was not at all obvious what its limit is! Next, we started Chapter 3, and de-
fined what it means for a function from some subset of the real numbers to the
real numbers to be continuous at a point in its domain. This definition uses two
positive real numbers, ε and δ. We went through several examples of functions
continuous at x = 2. For f(x) = x+1, we drew a picture, and guessed that δ = ε.
The for g(x) = 3x, we proved that δ = ε/3 works. Finally, we started looking at
h(x) = x2, which we plan to finish on Monday.



Week 6 September 25–29

Read §2.4

Homework §2.4: 1–3, 8–11

Monday Professor Mat Johnson guest lectured for our class this week, as Emily organized
a workshop at Caltech/American Institute of Mathematics.

Prof. Johnson began by proving some parts of the Main Limit Theorem, and then
start the next section (§2.4) by defining a monotone sequence, going through sev-
eral examples, and proving the Monotone Convergence Theorem (MCT) today or
Friday.

Wednesday Today was Midterm 1. Good luck, all!

Friday Depending on the pace of lecture on Monday, Prof. Johnson proved the MCT, and
then introduce the notion of infinite limits, with plenty of examples.

Week 5 September 18–22

Read §2.3

Homework §2.1: 7, 8; §2.2: 2, 3, 5, 6, 8; 2.3: 1–4, 6–9

Monday We began by recalling the definition of the limit of sequence. We proved that
the limit exists, and equals a certain value, for several examples, which required
slightly different methods. We also proved that if a sequence converges to a real
numbers, the sequence defined by the absolute values of its terms converges to
the absolute value of its limit.

Wednesday Today we recalled the definition of what it means for a sequence to have a limit,
and used it to prove that (−1)n has no limit. Then we proved the Squeeze Theorem
for sequences. After this, we stated the Main Limit Theorem, and used it to verify
the limit of a complicated-looking rational function.

Friday We started by taking Quiz 4 on limits of sequences. Then we recalled the Main
Limit Theorem and used it to find the limit of a certain sequence. Then we proved
that the sequence converges to this limit using the definition of a limit. Finally, we
proved that every convergent sequence is bounded, meaning that it both bounded
above and bounded below.

https://aimath.org/workshops/upcoming/macaulay2efie/


Week 4 September 11–15

Read §2.1, 2.2

Homework §1.5: 1–4, 7–9, 13; 2.1: 1–6

Monday We started class by going over Quiz 2. Then we recalled the Archimedean property
of the real numbers, and used it to prove that any positive real number x is greater
than 1/n for some natural number n. We recalled the definition of a nonempty
set of real numbers being bounded above, and defined the analogous notion of
bounded below. We stated the Completeness Axiom of the real numbers, and used
it to prove that any nonempty subset of real numbers that is bounded below has a
greatest lower bound. Next, we defined the extended real numbers by adding ∞
and −∞ to the real numbers, and defining inequalities between the elements of
these sets. Next, we defined the supremum and infimum of any nonempty subset
of real numbers, which is an extended real numbers, and equals the least upper
bound or greatest lower bound, respectively, if the set is bounded above or below,
respectively. We gave examples of finding the supremum and infimum.

Wednesday Today, we recalled the definition of the supremum and infimum of a nonempty set
of real numbers, which is an extended real number. Then we finished an example,
finding, with proof, the infimum and supremum of a given set. We did another
example, finding the set of all upper bounds for a set, which required polynomial
long division. We defined the sum and difference of two sets of real numbers, and
stated a theorem relating the suprema and infima of the negative of a set, and
these new notions, to the suprema and infima of the original sets. We proved one
of the statements. Finally, we stated and proved a theorem characterizing what it
means for a real number to greater than or equal to, or less then, the supremum
of a set.

Friday Today, we first took Quiz 3 on suprema and infima. Next, we reviewed the
Archimedean Principle and its consequence about positive real numbers. After
this, we discussed the absolute value and what it means for |x − a| < ε, where
a, ε are real numbers and ε > 0. After this, we stated and proved the two parts of
the triangle inequality. Finally, we defined a sequence of real numbers, and what
it means for a sequence to converge to, or limit to, some real number.



Week 3 September 4–8

Read §1.4, 1.5

Homework §1.3: 6–10; §1.4: 1–4, 7

Monday Labor Day Holiday

Wednesday First, we took Quiz 2 on induction. After this, we recalled the definition of a
commutative ring, and proved some properties about these structures. Then we
defined a field, a special kind of commutative ring where every nonzero element
has a (multiplicative) inverse. We noticed that the set of rational numbers forms
a field, and is in fact a so-called ordered field. We also proved a property about
ordered fields.

Friday We started by proving that
√
2 is not a rational number, though we are familiar

with using it as a real number. Next, we defined the set of real numbers via the
notion of a Dedekind cuts. We defined the notions of an upper bound and a least
upper bound, and proved that the real numbers satisfy the Completeness Axiom.
Then we proved that this also satisfies the Archimedean property.

Week 2 August 28–September 1

Read §1.2, 1.3, 1.4

Homework §1.1: 9, 12, 14, 15; §1.2: 8–10, 12–14; §1.3: 3, 4

Monday Today we reviewed the notions of functions between sets from last week, and de-
fined what is means for a function to be one-to-one (also called injective). We
proved statements about images and preimages under functions, and found coun-
terexamples to other statements. Then we stated Peano’s axioms for the natural
numbers and the Principle of Mathematical Induction.

Wednesday We started with Quiz 1 on sets and functions between sets. We then reviewed the
Principle of Mathematical Inductions, and used it to prove 1) that 2 | (n2 + n) for
every natural number n, and that 2) 1 + 2 + · · · + n = n(n+1)

2 for every natural
number n. Then we pointed out that properties of sequences of real number,
defined recursively, can be proved via induction.

Friday We started by proving that a recursively-defined sequence was positive and at
most 1 by induction. Then we used a variant of induction to show that 2n < n!

forn ≥ 4. After this, we defined a commutative ring, motivating the fact that these
collections of numbers allows us to solve certain algebraic equations. We noticed
that the sets of integers, real numbers, and complex numbers are commutative
rings using the usual addition and multiplication, as is the set of all polynomials
in a variable x with real coefficients.



Week 1 August 21–25

Read §1.1, 1.2

Homework §1.1: 1–8, 10, 11, 13

Monday Today, we started by going over the course website and syllabus. Then we in-
troduced the notion of a set, described and practiced set notation, introduced the
notion of the intersection and union of sets.

Before Wednesday, please send me an email with subject line

MATH 500: Introducing [Your Name]

and the following info:

• How you would like to be addressed
• Your math background, your relationship with math, what you hope to get

from MATH 500, and future goals.
• Anything else you’d like me to know.
• Something extra about you (if you feel comfortable sharing). Pet/home-

town photos welcome!

Wednesday We did more examples using set notation and finding intersections and unions of
infinitely many sets. We defined the complement of a set A in another set B, and
proved that if A and B are both subsets of a set X , then (A ∪B)c = Ac ∩Bc.

Friday Today, we defined a function between sets, the notion of a function being onto/-
surjective, and the image and preimage of sets. We proved that if A,B are subsets
of a set X , then the complement of A ∪ B is the intersection of the complement
of A with the complement of B.


