Final Review Session Problems

Math 290: Elementary Linear Algebra Fall 2018

1. Given the matrix
$$A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{bmatrix}$$
,

- (a) Find a basis for the row space.
- (b) Find a basis for the null space.
- (c) Verify the rank-nullity theorem for A.
- 2. Given the function

$$T: P_1(\mathbb{R}) \to P_2(\mathbb{R})$$

given by $T(ax + b) = ax^2 + bx + (a + b)$,

- (a) Verify that T is a linear transformation.
- (b) Find a basis for the range of T.
- (c) Find a basis for the kernel of T.
- (d) Verify the rank-nullity theorem for T.
- 3. Given the set

$$W = \{(2s - t, s, t) \mid s, t \in \mathbb{R}\}$$

- (a) Show that W is a subspace of \mathbb{R}^3 .
- (b) Find a basis for W.
- (c) Determine the dimension of W.
- 4. Which of the following are bases for \mathbb{R}^3 ?
 - (a) $S = \{(7, 0, 3), (8, -4, 1)\}$
 - (b) $S = \{(2, 1, -2), (-2, -1, 2), (4, 3, -4)\}$
 - (c) $S = \{(0, 0, 0), (1, 0, 0), (0, 1, 0)\}$
 - (d) $S = \{(1, 1, 1), (0, 1, 1), (1, 0, 0)\}$
- 5. Which of the following are linear transformations?

(a)
$$T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$$
 given by $T(A) = \det(A)$.
(b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (x, 1)$.
(c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(\mathbf{v}) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{v}$.

- 6. Which of the following are isomorphic vector spaces?
 - (a) $W = \{ \text{diagonal } 2 \times 2 \text{ matrices} \} \subseteq M_{2 \times 2}(\mathbb{R})$
 - (b) \mathbb{R}^3
 - (c) $P_2(\mathbb{R})$