
Daily Update

Math 290: Elementary Linear Algebra

Fall 2018

Lecture 27: Tuesday, December 4. After reviewing the definitions of a linear transformation,
and the kernel and range of a linear transformation, we recalled what is means for a linear trans-
formation to be one-to-one and onto, which ensure that it is an isomorphism. If V and W are
vector spaces, a linear transformation

T : V →W

is one-to-one if whenever T (v1) = T (v2), then v1 = v2. On the other hand, T is onto if given any
w ∈ W , there is some v ∈ V for which T (v) = w. Equivalently, T is one-to-one if the kernel of T
is {0}, and is onto if the image of T is W .

If there is an isomorphism from V to W (or W to V ), we say that V and W are isomorphic.
In fact, two vector spaces are isomorphic if and only if they have the same dimension!

We gave an example of a linear transformation that is an isomorphism.
We described a linear transformation that is a projection, and one given by differentiation, and

calculated the image and range of each.
Next, we described the eigenvalue problem: If A is a n× n matrix and λ is a scalar, if

Ax = λx

for some nonzero n×1 column vector x, then we say that x is an eigenvalue of A with corresponding
eigenvalue λ.

We verified that given scalar-vector pairs are in fact eigenvectors and corresponding eigenvalues.

Lecture 26: Thursday, November 29. We started class today by reviewing the definition of
a linear transformation

T : V →W

between vector spaces V and W , and then defined the kernel of T as the set of element in the
domain sent to zero

kernel(T ) = {v ∈ V | T (v) = 0} ⊆ V

and the range of T as the set of all outputs

range(T ) = {T (v) | v ∈ V } ⊆W.

The kernel is a subspace of the domain V , and the range is a subspace of W . Moreover, the
dimension of the kernel is called the nullity of T , and the dimension of the range is called the
rank of T . (Notice the nomenclature overlaps with language we use for matrices!)

We stated some important properties that all linear transformations satisfy:

• T (0) = 0

• For any v ∈ V , T (−v) = −T (v)
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• For any v1,v2 ∈ V , T (v1 − v2) = T (v1)− T (v2)

• For any scalars ci and vectors vi ∈ V , for 1 ≤ i ≤ n,

T (c1v1 + c2v2 + · · ·+ cnvn) = c1T (v1) + c2T (v2) + · · ·+ cnT (vn)

We found the kernel, range, nullity, and rank of the two “boring” linear transformations: the
zero and identity transformations.

Next, we described one of the most important types of linear transformations, those defined by
matrices: Given an m× n matrix, we checked that the function

T : Rn → Rm

given by T (v) = Av (where v ∈ RRn is a column vector, and so is T (v) ∈ RRm).
Using the example of the linear transformation

T :R3 → R3 given by

T (v) = Av

where A =

[
1 0 2
−2 0 −4

]
and v =

v1v2
v3

.

We calculated that in this example, the kernel of T in R3 is the span of the vectors

 1
0
−2

 and0
1
0

, and the range of T is the one-dimensional subspace of R2 spanned by

[
1
−2

]
. Therefore, the

rank of T is two, and the nullity is one; their sum is the number of columns of A, three!
We pointed out that rotation of vectors by a fixed angle θ about the origin in R2 is a linear

transformation T : R2 → R2, given by multiplication by the matrix

A =

[
cos θ − sin θ
sin θ cos θ

]
.

We found that its kernel is {0}, so the nullity is zero, and the range is all of R2, so the rank is two.
This is an example of an isomorphism: a linear transformation T : V → W that is both

one-to-one and onto:

• One-to-one: No two elements have the same output, or equivalently, if T (v1) = T (v2), then
v1 = v2.

• Onto: Every element of W is an output value; i.e., if w ∈W , then T (v) = w for some v ∈ V .

We will finish our initial discussion of linear transformations next time, and then start our final
topic of the semester: eigenvalues and eigenvectors.
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Lecture 25: Tuesday, November 27. Today we pieced together some work from last time to
extend our equivalence of conditions for a square matrix of order n to be invertible:

A invertible ⇐⇒ det(A) 6= 0

⇐⇒ rankA = n

⇐⇒ the n rows of A are linearly independent

⇐⇒ the n columns of A are linearly independent.

Next, we defined a linear transformation between vector spaces V and W as a function

T : V →W

(i.e., V is the domain, and the output values of T lie in W ) that satisfy the following two conditions,
for all v,u ∈ V , and all scalars c:

1. T (v + u) = T (v) + T (u).

2. T (cv) = cT (v).

We first investigated the linear transformations from R to R. Unfortunately, the functions
T (x) = x2 and T (x) = sinx fail property (1), but we figured out that the identity map T (x) = x, and
the line T (x) = 2x are linear transformations! However, the functions T (x) = 1 and T (x) = 2x+ 1
are not linear transformations, since they fail, for instance, property (1), even though they are
also lines. We concluded that lines through the origin, i.e., functions of the form T (x) = ax for a
constant a are linear transformations.

Next, we turned to considering a linear transformation

T : R2 → R2

given by, for v = (v1, v2),
T (v) = (2v1 − v2, v1 + v2).

We verified the two properties that ensure this is a linear transformation.
Next, we noticed that for any vector space V , the identity function T (v) = v is a linear

transformation from V to itself. On the other hand, for any two vector spaces V and W , the zero
function T (v) = 0 (where v ∈ V and 0 ∈W is a linear transformation from V to W .

We saw that linear transformations can be defined by the image of basis vectors. For instance,
we saw in an example that T (2, 3, 4) is defined by where the standard basis vectors map to in a
linear transformation from R3 to itself.

Next time we will consider linear transformations defined by a matrix!
Also, remember to review the notions of row/columns space, rank, null space, and nullity

for next time!

Lecture 24: Tuesday, November 20. We started class by recalling the definition of the row
and column space of a matrix, using the example

A =

 1 0 3 4
0 −2 1 0
−2 2 −7 −8

 .
3
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In this case, the row space of A is the vector subspace

span
{[

1 0 3 4
]
,
[
0 −2 1 0

]
,
[
−2 2 −7 −8

]}
⊆ R4

and the column space of A is

span


 1

0
−2

 ,
 0
−2
2

 ,
 3

1
−7

 ,
 4

0
−8

 ⊆ R3.

Our first goal is to find a basis for the row and the column spaces.
In fact, A is row equivalent to the matrix

B =

1 0 3 4
0 1 −1

2 0
0 0 0 0

 .
and this means that the row vectors here span the same row space! We determined that the nonzero
row vectors form a basis, so the row space of B, and of A, is two-dimensional.

This works in general: After turning a matrix A into a matrix B using elementary row op-
erations, if B is in row-echelon form, the nonzero rows of B form a basis for the row space of
A!

Next, we turned to the problem of finding a basis for the column space of A. Unfortunately,
applying row operations can change the column space (but it does not change the dependency
among the columns.)

We used two methods. In the first method, we saw that the column space of A is the same as
the row space of AT , so we row-reduced AT to obtain the new matrix

1 0 −2
0 1 −1
0 0 0
0 0 0


in row-echelon form, so that after transposing back to columns, a basis for the column space of A
is 

 1
0
−2

 ,
 0

1
−1

 .

In particular, like the row space of A, it is two-dimensional!
Our second method of finding a basis for the column space of A uses the fact that row operations

do not change dependency relations on columns (although they can change the column space). If
v1,v2,v3,v4 are the columns of A, and w1,w2,w3,w4 are the columns of B, then by inspecting
B, we can see that

w3 = 3w1 −
1

2
w2 and w4 = 4w1.

Therefore,

v3 = 3v1 −
1

2
v2 and v4 = 4v1.

4
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so that v1 =

 1
0
−2

 and v2 =

 0
−2
2

 (which are linearly independent) form a basis for the column

space of A! Although this basis is different than the first one, we see that the first vector is the
same in each, and the second is just a scalar multiple of the other!

Next, we stated a theorem: If A is an m×n matrix, and the dimension of the row space equals
the dimension of the column space. We call this the rank of A. In our example, rank(A) = 2.

Lecture 23: Thursday, November 15. We started class by looking at a video visualization of
the span of vectors in R2 and in R3.

We recalled the definition of a basis for a vector space, and reminded ourselves of the bases we
found last time, for R2, M2×2(R), and P3(R).

We stated a theorem: If S = {v1,v2, . . . ,vn} is a basis consisting of n elements of a vector
space V , then the following hold:

1. Every element of V can be written in exactly one way as a linear combination of S.

2. Every set consisting of more than n elements of V are linearly dependent.

3. Every basis for V consists of exactly n elements of V .

We saw a few examples, and then defined the dimension of a vector space V as the number of
elements in any basis for V . (There is one exception: the vector space consisting only of the zero
vector is said to have dimension zero, even though its basis consists of the one zero vector.)

We calculated the dimension of some familiar vector spaces: dim(Rn) = n, dim(Pn(R)) = n+1,
and Mm×n(R) = mn.

Then we approached the question of how to find the dimension of a vector subspace. We started
with the subspace

W = {(a, b, a+ 3b) | a, b ∈ R}

of R2. We saw that the vectors (1, 0, 1) and (0, 1, 3) are both in W , and that they are linearly
independent since they’re not multiples of one another. Therefore, to show that

S = {(1, 0, 1), (0, 1, 3)}

is a basis for W , we only need to show that S spans W . This holds, since given an arbitrary element
of W , (a, b, a+ 3b) for some real numbers a, b, we have that

(a, b, a+ 3b) = a(1, 0, 1) + b(0, 1, 3)

so that every element of W can be written as a linear combination of the elements of S. Therefore,
S is a basis, and since it has two elements, dim(W ) = 2.

We then showed the the subspace W ′ of all symmetric 2×2 matrices, of M2×2(R) has dimension
three by showing that the following is a basis:

T =

{[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]}
.

Of course, we needed to show that S spans W ′, and that S is linearly independent. However, the
following theorem allows us to skip one of these steps in the future: If V is a vector space of
dimension n, then

5
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1. If S is linearly independent, then S is a basis for V .

2. If S spans V , then S is a basis for V .

Next, we defined the null space N(A) of an m × n matrix A as the vector subspace of Rn

consisting of all column vectors x =

x1. . .
xn

 ∈ Rn for which Ax = 0 ∈ Rm. The dimension of N(A)

is called the nullity of A.
We already know how to solve the homogeneous system Ax = 0, so we focused on finding a

basis for the nullspace. In our example of A above, we found the parametric solution to Ax = 0
using methods from class:

x1 = −3s− 4t, x2 = 1/2s, x3 = s, x4 = t

where s, t are real numbers. Therefore, the null space N(A) is the set of all x ∈ R4 of the form

x =


x1
x2
x3
x4

 =


−3s− 4t

1/2s
s
t

 = s


−3
1/2
1
0

+ t


−4
0
0
t

 .

From here, we can determine that the vectors


−3
1/2
1
0

 and


−4
0
0
t

 form a basis for N(A)! Therefore,

the nullity of N(A) is two.

Finally, we solved a non-homogeneous linear system Ax =

 3
−1
−5

 like usual, and saw that

all solutions look like an element in the null space (determined above) plus a fixed vector. This
phenomenon is pervasive, as illustrated by the following theorem: If xp is a particular solution
to a non-homogeneous system Ax = b, then any solution has the form xp + xh, where xh is an
element of the nullspace of A (i.e., a solution to the homogeneous system Ax = 0).

Lecture 22: Tuesday, November 13. We started class by recalling the definition of what it
means for a set to span a vector space, and gave several examples.

Then, we defined what it means for a set

S = {v1,v2, . . . ,vk}

of elements in a vector space V to be a basis for V :

1. S spans V , and

2. S is linearly independent.

6
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We went back to our original examples, and determined whether a certain spanning set is a
basis. Next, we justified the fact that the following set is a basis for Rn:

S = {e1, e2, . . . , ek}

where ei is the vector in Rn whose i-th coordinate is 1, and all other coordinates equal 0. This is
called the standard basis for Rn.

We showed that there are other bases; for example, the standard basis in R2 consists of e1 =
(1, 0) and e2 = (0, 1), but we also checked that

T = {(1, 1), (−1, 1)}

is also a basis by verifying that T spans R2, and is linearly independent in R2. (This boiled down
to computing determinants!)

We then constructed our own basis for P2(R), the vector space of all polynomials with real
coefficients in R that have degree at most 2:

S = {1, x, x2, x3}.

At first, we also included 0 in S, and the set did span P2(R), but we noticed that when the zero
vector is included in a set, the set if never linearly independent.

We also gave a basis for M2×2(R) as the set

S = {
[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
}.

We saw, intuitively, why S spans M2×2(R), and gave an exercise to check that S is linearly inde-
pendent.

In fact, this standard basis for M2×2(R) gives the idea for the standard basis for all Mm×n(R),
which consists of matrices Nij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where Nij has all 0 entries except its
(i, j)-entry is 1.

Finally, we noticed that in every case we found, all bases appear to have the same number of
elements. This will be important when we discuss the dimension of a vector space next time!

Lecture 21: Tuesday, November 6. Today, we defined the span of a set of vectors

S = {v1,v2, . . . ,vk}

as the set of all linear combinations of the vectors in S.
The set S is called linearly independent if, whenever given a linear combination of vectors

that equals the zero vector,
c1v1 + c2v2 + · · ·+ ckvk = 0

then all the scalars must be zero, i.e., c1 = c2 = · · · = ck = 0. The set S is is called linearly
dependent if it is not linearly independent.

We did several examples of finding the span of a set, and testing linear independence/dependence.
Then, we described a method of testing linear independence:

1. From the linear equation c1v1 + c2v2 + · · ·+ ckvk = 0, write a system of linear equations in
c1, c2, . . . , ck.

7
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2. Decide whether the system has only the trivial solution c1 = c2 = · · · = ck = 0. (Notice that
this is always a solution!)

3. If the system only has the trivial solution, then S is linearly independent. If there are more
solutions, the set is linearly dependent.

We used this method to test linear independence of several sets, one in R3, one in the vector
space of polynomials of degree at most two P2(R), and one in the set of 2× 2 matrices M2×2(R).

In the remaining time, we did a short review for the midterm. This included using determinants
to tell whether there is a unique solution to a system of equations (without solving the system!)
and stating the vector space axioms being used in logical steps.

For your convenience, we list a few other topics that might be important to review (feel free
to come to office hours with questions): use elementary row operations to compute determinants,
determine collinearity/coplanarity using determinants, find areas/volumes using determinants, de-
termine whether a Markov chain is absorbing, apply Cramer’s rule to solve a system of equations.

Lecture 20: Thursday, November 1. We started class today by reviewing the definition of a
linear combination of vectors in a vector space.

Then we gave examples, illustrating how we can decide whether one vector w in a vector space
V can be written as a linear combination of other vectors v1,v2, . . . ,vk, using linear algebra (more
specifically, setting up and solving a system of linear equations)! We saw that it is possible that w
can be written uniquely as linear combination of v1,v2, . . . ,vk, or can be written in infinitely many
ways a linear combination, and it is also possible that it cannot be written as a linear combination
of v1,v2, . . . ,vk. Our examples included a variety of vector spaces V .

Next, given a set S = {v1,v2, . . . ,vk} of vectors in a vector space V , we defined what it means
for S to be a spanning set for V : Every vector in V can be written as a linear combination of the
elements in S.

If S is a spanning set for V , we also say S spans V .
We gave examples of sets that do, and do not, form spanning sets.

Lecture 19: Tuesday, October 30. Today we reviewed the criterion for a subset of a vector
space to be a subspace, and then went through many examples, in each, determining whether a
given subset is a subspace or not.

We started by looking at two subsets of M2×2(R), the vector space of all 2 × 2 matrices with
entries that are real numbers.

• The set W of all symmetric matrices (i.e., matrices A for which AT = A) is a vector subspace,
using the criterion.

• The set Z of all singular matrices (i.e., matrices A for which det(A) = 0) is not a subspace,

since it is not closed under addition: For instance,

[
1 0
0 0

]
and

[
0 0
0 1

]
are both singular, but

their sum is the identity, which is definitely not singular!

Next, we turned to investigating the subspaces of R2. We showed that the set Y of all vectors
of the form (0, a), where a is any real numbers, is a vector space. It can be identified with the
y-axis! In other words, Y = {(x, y) | x = 0}

8
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We then showed that the set U of all vectors of the form (a, a), where a is again any real number,
is also a vector space, and can be identified with the line y = x; i.e., U = {(x, y) | x = y}.

However, the set T consisting of vectors with positive coordinates is not a vector space–for
instance, (0, 0) is not in T . But even if we change the set to S, the set of all vectors in R2 with non-
negative coordinates, it is still not a vector space, since it is not closed under scalar multiplication;
for instance −1 · (2, 2) = (−2,−2), which is not in S although (2, 2) is in S!

In fact, all vector subspaces of R2 must be one of the following:

• The set consisting only of (0, 0).

• The set of all points on a fixed line passing through the origin.

• The entire set R2.

Going along with this, we saw why the set {(x, y) | x+ 5y = 0} is a vector space, while the set
{(x, y) | x+ 5y = 1} cannot be one!

In line with this, we made a conjecture about the subspaces of R3, and we were correct! They
are the following:

• The set consisting only of (0, 0, 0).

• The set of all points on a fixed line passing through the origin.

• The set of all points on a fixed plane passing through the origin.

• The entire set R3.

Using this list, we can show that the set of all vectors of the form (x1, x2, 1) (where x1, x2 are
real numbers) does not form a vector space, but the set of vectors of the form (x1, x1 + x3, x3)
(where x1, x3 are real numbers) does form a vector space.

Finally, we defined a linear combination of vectors u1,u2, . . . ,uk as a vector of the form

c1u1 + c2u2 + ·+ ckuk

where the ci are scalars.
We tied this to common calculations in physics class!

Lecture 18: Thursday, October 25. Today, we reviewed the definition of a vector space, and
stated some properties of vector space addition, which required us to use the properties defining a
vector space! More precisely, if v is any element of a vector space V , and c is a real number, then:

• 0 · v = 0

• c · 0 = 0, and

• If cv = 0, then c = 0 or v = 0.

Next, we defined a subspace W of a vector space V as a subset of V that is itself a vector
space. We saw that the set containing only the element (0, 1) in R2 is not a vector space, but the
set containing only (0, 0) is a vector space! In general the set containing only the zero element, and
a vector space itself, are always subspaces.

Finally, we stated a simple criterion to verify whether a subset W of a vector space V is a
subspace: W is a subspace if the following two conditions hold.

9
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• u + u ∈W for any v,u ∈W , and

• cu ∈W for any u ∈W and scalar c.

Lecture 17: Tuesday, October 23. Our focus today was on the notion of a vector space: A
set V with two operations:

• Addition: For any u,v ∈ V , u + v ∈ V .

• Scalar multiplication: For any v ∈ V and real number c, cv ∈ V .

Moreover, these operations are required so satisfy the following properties: Properties of addi-
tion.

• Commutativity: For any u,u ∈ V ,

u + v = v + u.

• Associativity: For any u,u,w ∈ V ,

(u + v) + w = u + (v + w).

• Additive identity: There is a special element in V called the zero element, and denoted
0, such that for any v ∈ V ,

v + 0 = v.

• Negatives: For any v ∈ V , there is another element in V called the negative of v, and
denoted −v, for which

v + (−v) = 0.

Properties of scalar multiplication.

• Distributivity: For any u,v ∈ V and real numbers c, d,

c(u + v) = cu + cvv and (c+ d)u = cu + du.

• Associativity: For any u ∈ V and real numbers c, d,

c(du) = (cd)u.

• Multiplication by 1: For any u ∈ V , 1u = u.

We then spent most of the class discussing examples, and non-examples, of vectors spaces!

1. The first examples is the set of all vectors in R2; we use all of the axioms when doing arithmetic
of vectors! Of course, the same ideas make the set of all vectors with three coordinates, R3,
into a vector space, or even Rn for any integer n ≥ 1.

2. The previous examples includes R as a vectors space: notice that “addition” is just regular
addition of real numbers, and “scalar multiplication” is just regular multiplication of real
numbers!

10
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3. The set of integers Z is not a vector space, because you can find real number scalar, which
after multiplication by an integer, results in a number that is not an integer: e.g., 1

2 ·3 = 3
2 /∈ Z.

4. The subset of R2 consisting of all vectors with positive coordinates is not a vector space: For
example, there is no zero element!

5. The set of all 2× 2 matrices, M2×2(R) is a vectors space, with zero element the zero matrix.
In fact, the set of all n×m matrices, Mn×m(R), is also a vector space!

6. The set P (R) of all polynomials is a vectors space, with the usual addition and scalar multi-
plication, and 0 = 0 · x0 the zero element. The subset P2(R) of all degree 2 polynomials (i.e.,
all parabolas) is not a vector space, since we don’t have well-defined addition: for instance,

(x2 + 1) + (−x2 + x) = x+ 1

which is not a parabola. However, you can check that the set P≤2(R) of all polynomials of
degree at most 2 is a vector space! So is P≤n, the set of polynomials of degree at most n, for
any n ≥ 0.

7. The set C(∞,∞) of all continuous functions from the real numbers to the real numbers is a
vector space, with regular addition and scalar multiplication, and zero element the function
sending every element to 0 ∈ R. So is C[a, b], the set of all continuous functions with domain
an interval [a, b] to the real numbers.

We showed that 0 ·v = 0 for any v in a vector space V . This required the application on several
of the properties defining a vector space!

Lecture 16: Thursday, October 18. Today, we reviewed and illustrated Cramer’s rule for
solving systems of linear equations using determinants.

Next, we gave a formula for the area of a triangle with vertices (x1, y1), (x2, y2), and (x3, y3)
in terms of determinants: it is the absolute value of

1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
We showed why this holds! Then we did an example to verify the formula we know (when the
triangle has a horizontal base).

Next, we saw that these ideas give us a test for three collinear points: (x1, y1), (x2, y2), and
(x3, y3) line on one line if and only if ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ 6= 0.

We can analogously determine a test for four coplanar points in three dimensions using the
determinant of a larger matrix!

The test for collinear points also gives us a formula for the equation of a line through
two points: ∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0.

11
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We saw what happens here if the two points do not pass the horizontal line test!
Next, we gave a formula for the volume of a tetrahedron using a matrix of order 4!
Finally, we quickly reviewed the definition of a vector in R2 and R3.

Lecture 15: Thursday, October 11. Today, we defined the adjoint adj(A) of a square matrix
A as the transpose of the cofactor matrix [Cij ]. The significance of this matrix is that if A is
invertible, then

A−1 =
1

det(A)
adj(A).

We did an example of computing the adjoint of a 3× 3 matrix, and after pointing out that its
determinant is nonzero, we used the above fact to find its inverse. We pointed out that we can
always check whether our computation of the inverse of a matrix is correct, by multiplying it by
the original matrix (in both orders), and verifying that we obtain the identity matrix. Then we
showed why the above fact holds, for any matrix of order 2.

We then turned to explaining Cramer’s rule, first for systems of two equations in two variables,
but there is an analogous rule for any system of equations with the same number of variables as
equations. Given a linear system

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

let A denote its coefficient matrix

[
a11 a12
a21 a22

]
. Then if Ai is the matrix obtained from A by replacing

the i-th column of A with the constant vector

[
b1
b2

]
, if a solution exists (i.e., det(A) 6= 0), it is

x1 =
|A1|
|A|

, x2 =
|A2|
|A|

.

In general, with n equations and n unknowns, the same definition of Ai (replacing the i-th
column of the n× n coefficient matrix A with the n× 1 matrix of constants) yields the solution (if
it exists) given by

x1 =
|A1|
|A|

, x2 =
|A2|
|A|

, . . . , xn =
|An|
|A|

.

Lecture 14: Tuesday, October 9. We started class by reviewing what happened to a given
2× 2 matrix after an elementary row operation was applied. The results aligned with the following
theorem: If A and B are square matrices, and

• B is obtained from A by interchanging two rows, then |B| = −|A|.

• B is obtained from A by scaling a row by scalar c, then |B| = c|A|.

• B is obtained from A by adding a multiple of a row of A to another row of A, then |B| = |A|.

12
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We saw how this theorem is useful, by performing row operations until we obtain an upper-
triangular, and tracking what happens to the determinant with each operation.

Next, we noted that we can do the analogous column operations to a matrix, and the determinant
will change in the same way as the theorem indicates, where the word “row” is replaced with
“column”.

We argued why any of the following conditions guarantee a zero determinant:

• An entire row (or column) consists of 0s.

• Two rows (or columns) are equal.

• One row (or column, respectively) is a multiple of another row (or column).

We then turned to other properties of determinants. In fact, if A and B are square matrices of
the same size, then

det(AB) = det(A) det(B).

If A has order n, then
det(cA) = cn det(A),

and we showed why this holds for any 2× 2 matrix.
In fact, it is always true that

A is nonsingular ⇐⇒ det(A) 6= 0,

and if A is nonsingular, then we argued why

det(A−1) =
1

det(A)
.

Using cofactors, we also argued that for any square matrix A,

det(AT ) = det(A).

Remember to study Markov Chains and determinants for a potential quiz on Thursday!

Lecture 13: Thursday, October 4. Today, we recalled the definitions of the minors and
cofactors of a matrix, and the sign pattern for cofactors.

After reviewing the formula for the determinant of a 1 × 1 and 2 × 2 matrix, we defined the
determinant of a square matrix of order n ≥ 2 (i.e., a n × n matrix) recursively, as the sum of
the entries in its first row, multiplied by the respective cofactors.

We calculated an example explicitly of the determinant of a 3× 3 matrix using this definition.
Next, we stated the fact that in the definition of the determinant, we can expand along the first

column instead of the first row, or along any row or any column! We must just be careful with the
signs of the cofactors.

We went back to our initial example, and calculated the determinant using the second column
instead of the first row, and got the same answer!

Next we turned to a matrix with several zero entries, and saw how to choose the row/column
over which to expand, based on the placement of the zero entries. We calculated the determinant
of a matrix of order 4 using the definition, after carefully choosing the row/column to expand over.

13
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We investigated the determinant of upper and lower triangular matrices, and stated the fact
that the determinant of any such matrix is simply the product of the entries along the diagonal.

Finally, after noticing that calculating the determinant of two row-equivalent matrices can be
easier or harder that one another, depending on the form of the matrices, we saw what happens
to the determinant in an example, after each kind of elementary row operation is performed. Next
time we will make this precise!

Lecture 12: Tuesday, October 2. We started class by reviewing the definitions of a stochastic
matrix, matrix of transition probabilities, initial state matrix, Markov chain, and steady
state matrix.

We gave an example of a Markov chain, using the matrix

P =

[
.8 .1
.2 .9

]
of transition probabilities of smartphone users owning an Android (first state) or iPhone (second

state). Our initial state matrix was X0 =

[
.4
.6

]
, representing the fact that at this point in time,

40% of users with an Android phone, and 60% an iPhone.
We calculated the percentage of users with each type of smartphone after 1 and 2 units of time,

and then calculated the steady state matrix X =

[
x1
x2

]
using the system of linear equations

coming from the equality
PX = X

along with the equation x1 + x2 = 1. In fact, X =

[
1
3
2
3

]
.

We defined a regular stochastic matrix as a stochastic matrix P for which some power Pn

has all positive entries; we gave a couple examples of regular and non-regular stochastic matrices.
The corresponding Markov chain is called a regular Markov chain, and we state the theorem
that any regular Markov chain has a unique steady state.

Next, we call the i-th state of a stochastic matrix P = [pij ] an absorbing state if pii = 1 (so all
other entries in the i-th column must equal 0). We call the associated Markov chain an absorbing
Markov chain if

• There is at least one absorbing state, and

• A member of the population can move from any non-absorbing state to any absorbing state
in a finite number of transitions.

Finally, we stated the following theorem: An absorbing Markov chain has either a unique steady
state, or infinitely many steady states (in the sense that PX = X).

Next, we switched gears completely. We recalled the definition of the determinant of a 2× 2

matrix A =

[
a b
c d

]
as

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

We know that this value is useful since it tells us whether A is nonsingular: det(A) 6= 0 if and only
if A is nonsingular.

14
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Our next goal will be to define the determinant of a 3× 3 matrix

A =

x11 x12 x13
x21 x22 x23
x31 x32 x33


although the definitions we will now give apply to any square matrix.

The minor Mij of aij is obtained by first deleting the i-th row and j-th column of A, and
then taking the determinant of the remaining matrix. From here, the cofactor of aij is Cij =
(−1)i+jMij .

We gave several examples computing minors and cofactors, and then described the general sign
pattern for cofactors.

Make sure to know these two last definitions for next time!

Lecture 11: Tuesday, September 25. After discussing Miterm 1 and Quiz 4, we started
discussing Markov Chains.

A stochastic matrix is a square matrix, with every entry between 0 and 1 (inclusive), and
each column sums to 1. We gave several examples of stochastic matrices.

One example of a stochastic matrix is a matrix of transition probabilities associated to n
states S1, . . . , Sn, which is an n × n matrix P = [pi,j ], where pij is the probability that the j-th
state will change to the i-th state.

We did an example of weather prediction, where the first state is “dry,” and the second is “wet.”

P =

[
3
4

2
3

1
4

1
3

]
.

For example, there is 1
4 chance of weather changing from dry to wet. We drew a diagram representing

the states and matrix of transition probabilities.
A Markov chain is a sequence of state matrices Xn for which Xk+1 = PXk.

Here, our initial state matrix, which represents the current state, is X0 =

[
1
0

]
since the initial

state is “dry.” To find the state matrix after 1 unit of time, we calculate

X1 = PX0 =

[
3
4

2
3

1
4

1
3

] [
1
0

]
=

[
3
4
1
4

]
.

Iterating this process, we find that after 2 units of time, we have

X2 = PX1 = P 2X0 =

[
105
144
39
144

]
.

and

X3 = PX2 = P 3X0 =

[
1257
1728
471
1728

]
.

The n-th state matrix is Xn = PnX0, which satisfies the recursion Xn+1 = PXn.

In fact, in our case, X100 ≈
[
.727
.272

]
.

A steady state matrix is a matrix X for which PX = X. If the limit PnX exists, its limit

is a steady state. We used the formula PX = X to find the steady state in our case to be

[
8
11
3
11

]
.

15
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Lecture 10: Thursday, September 20. We started class by recalling the definition of upper-
triangular and lower-triangular matrices. Next, we defined an LU -factorization of a square
matrix as a product

A = LU

where L is a lower-triangular, and U is an upper-triangular matrix.
In fact, an LU -factorization exists if A can be transformed into an upper-triangular matrix

using only the elementary row operations of adding a multiple of one row to another row below it.
We did an example of finding an LU -factorization of a matrix A. Then we applied our result

to find a solution to an equation of the form Ax = b, using the following steps: Note that we want
to solve b = Ax = (LU)x = L(Ux); i.e.,

L(Ux) = b.

• Step 1. Let y = Ux and solve the system Ly = b for y (using forward-substitution).

• Step 2. Now solve the system Ux = y for x using back-substitution.

Lecture 9: Tuesday, September 18. Today, we discussed the notion of “if and only if,” and
used it throughout class today.

We defined an elementary matrix as an n× n matrix that can be obtained from the identity
matrix In by one elementary row operation. We gave several examples of elementary matrices (and
matrices that are not elementary!).

We saw, through an example, that the following holds: If E is an elementary matrix obtained
by performing a specific elementary row operation on In, then EA is the same elementary row
operation applied to an n×m matrix A.

Next, we started with a matrix A, and saw that row reduction corresponds to multiplying A
on the left by a series of elementary matrices. We say that matrices A and B of the same size are
row equivalent if there are elementary matrices E1, E2, . . . , Ek for which

B = EkEk−1 · · ·E2E1A.

We stated the fact that if E is an elementary matrix, then it is invertible, and E−1 is also an
elementary matrix. We gave several examples of this, recalling our method of finding inverses (and
the formula for the inverse of a 2× 2 matrix.

In fact, a square matrix A is invertible if and only if it can be written as a product of elementary
matrices! (This can be the “product” of only one matrix.) We went through an example of
performing Gauss-Jordan elimination to a matrix, and using each step to write the matrix as a
product of elementary matrices. In this example, we got that our matrix A could be written as

E3E2E1A = I2

where E1, E2, E3 are elementary matrices, and then iteratively multiplying by E−13 , then E−12 , and
then E−11 , that

A = E−11 E−12 E−13 .

This fact will be very useful later on when discussing “determinants”!
Finally, for what we will start next time, we defined an upper-triangular matrix as a square

matrix with only 0 entries below the diagonal, a and a lower-triangular matrix as a square
matrix with only 0 entries below the diagonal.

16
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Lecture 8: Thursday, September 13. Today, we continued to discuss invertible matrices,
and the inverse of an invertible matrix. We are motivated by the fact that for real numbers a, b,
we can always solve for the real number x in the equation

ax = b

by letting x = 1
a · b, unless a = 0! This is in analogy with solving a matrix equation

AX = B

for X, where A and B are given square matrices with the same size. If A is invertible, then
AX = B precisely if (if and only if ) A−1(AX) = A−1B, or equivalently, (A−1A)X = A−1B, or
X = InX = A−1B. So the unique solution if A is invertible is X = A−1B!

We set up an example where such a solution is not possible: If C =

[
0 0
−11 −1

]
and D =[

5 1
0 7

]
, then the equation

CX = D

cannot have a solution, since the upper-left corner entry of CX will always be 0, while that of D
is 5.

Next, we reviewed the method we developed last time of how to find the inverse of the matrix

A =

[
1 5
−1 −3

]
: First, we ajoin A with the identity matrix I2 to obtain the matrix

[
1 5 1 0
−1 −3 0 1

]
and then we perform elementary row operations until the left-hand matrix (which was A) becomes
I2. In this case, we obtained [

1 0 −3
2 −5

2
0 1 1

2
1
2

]
The right-hand matrix

[
−3

2 −5
2

1
2

1
2

]
is then A−1!

In general, the same method works: To find the inverse of an n× n matrix A, we adjoin A and
In to get a matrix A | In, and then perform elementary row operations until the left-hand matrix
is In; then the right-hand matrix is A−1. In other words, we perform Gauss-Jordan elimination to
A | In to obtain In | A−1.

However, this does not work if A is not invertible (since A−1 does not exist). What happens
here is that when A is turned into reduced row-echelon form, it is not the identity matrix. For

example, if we try to find the inverse of B =

[
1 2
3 6

]
[

1 2 1 0
3 6 0 1

]
and after replacing R2 − 3 ·R1 → R2, we have[

1 2 1 0
0 0 −3 1

]
17



Fall 2018 Math 290: Elementary Linear Algebra 18

and the left-hand side is already in reduced row-echelon form. Therefore, we can conclude that the
matrix B has no inverse!

We stated the following important Fact: A 2 × 2 matrix A =

[
a b
c d

]
is invertible precisely if

ad−bc 6= 0 (and we refer to the value ad−bc as the determinant of A). Moreover, if A is invertible,
then its inverse is

A−1 =
1

ad− bc

[
d −b
−c a

]
.

We checked that our matrix A =

[
1 5
−1 −3

]
from earlier satisfies ad−bc = 1·−3−5·(−1) = 2 6= 0,

and that its inverse satisfies the formula given.
Finally, we stated some important properties and conclusions about inverses of matrices. We

verified or gave evidence toward each:

Theorem: If A is an invertible matrix, and c is a scalar, the following hold.

1. (A−1)−1 = A

2. (Ak)−1 = (A−1)k

3. (cA)−1 = 1
cA
−1

4. (AT )−1 = (A−1)T

Theorem: If A and B are invertible matrices with the same size, then

(AB)−1 = B−1A−1.

Theorem: If C is an invertible n× n matrix, then the cancellation property with respect to C
holds: If A and B are m×n matrices and AC = BC, then A = B. Moreover, if D and E are n× p
matrices and CD = CE, then D = E.

Theorem: If A is an invertible n×n matrix, and b is an n× 1 vector, then there exists a solution
to the equation

Ax = b

where x is a n× 1 vector.

Lecture 7: Tuesday, September 11. Today, we started with an example showing that
cancellation does not always hold for matrices: If AB = AC, then it is necessarily true that
A = B.

We recalled the definition of the transpose of a matrix A, and described it three different ways.
We defined a matrix A to be symmetric if it is a square matrix, and A = AT .

We stated a theorem on propertes of transpose matrices:

1. (AT )T = A

2. (A+B)T = AT +BT

3. (cA)T = c(AT )

18
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4. (AB)T = BTAT

and did an example verifying the last statement.
After seeing an examples, and then verified that given a matrix A, AAT is always symmetric.

We also did an example verifying this.
Next, given matrices A and B, and motivated by finding a solution to

AX = B

for some matrix X, we gave the following definition:
A square n× n matrix A is invertible (or nonsingular) if there exists a matrix B for which

AB = BA = In

If A is invertible, then the matrix B above is called the (multiplicative) inverse of A, and is
often denoted A−1.

A matrix that is not invertible is called non-invertible or singular.

We showed that the inverse of

[
1 −1
1 0

]
is

[
0 1
−1 1

]
, and then turned the the question of finding

the inverse of the matrix

A =

[
1 5
−1 −3

]
If X =

[
x11 x12
x21 x22

]
is the inverse of A, then in particular, AX = I2; i.e.,

[
1 5
−1 −3

]
·
[
x11 x12
x21 x22

]
=

[
1 0
0 1

]
We turned this product requirement into a system of equations in the variables xij , and found the
solution. Next, we saw that this was equivalent to starting with the matrix obtained by adjoining
A and I2: [

1 5 1 0
−1 −3 0 1

]
and performing elementary row operations to the left-hand “A” portion until it is transformed into
the identity matrix. In this case, we got[

1 0 −3
2 −5

2
0 1 1

2
1
2

]

The right-hand matrix

[
−3

2 −5
2

1
2

1
2

]
is A−1!

This generalizes to a method that can be used to find all inverses: Adjoin the matrix and the
identity matrix, and perform Gauss-Jordan elimination until the left-hand side becomes the identity
matrix. Then the right-hand side is the inverse of the original matrix!

However, a word of warning: If the matrix you begin with is not invertible, it will not be
possible to perform elementary row operations to obtain the identity matrix on the left-hand side!
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Lecture 6: Thursday, September 6. Today, we first reviewed how to turn a system of
equations

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm

can be written as one equation of matrices,

Av = b,

where

A =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

. . .
...

am1 am2 . . . amn bm

 ,v =


x1
x2
...
xn

 ,b =


b1
b2
...
bm

 .
We then discussed how to partition the product of matrices, to write the left-hand side of the
system of linear equations as a linear combination of column matrices: If, for 1 ≤ i ≤ n, ai

denotes the column matrix


a1i
a2i
...
ami

, then the system can be written as

x1a1 + x2a2 + · · ·xnan

=x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n

...
amn

 .
We next began to discuss properties of matrix operations. We started with some basic

properties: If A,B,C are m× n matrices, and c, d are real scalars, then

• Commutativity of addition. A+B = B +A

• Associativity of addition. A+ (B + C) = (A+B) + C

• Associativity of iterated scalar multiplication. (cd)A = c(dA)

• Scalar identity. 1 ·A = A

• Distributivity of scalar multiplication. c(A+B) = cA+ cB and (c+ d)A = cA+ dA

We defined the negative of a matrix A = [aij ] as the matrix −A = [−ai,j ]. We also defined
the m× n zero matrix 0 or 0m×n as the m× n matrix in which every entry of 0.

We stated a theorem on properties of zero matrices: If A is m× n, and c is a scalar, then

1. A+ 0−A

2. A+ (−A) = 0

20
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3. If cA = 0, then c = 0 or A = 0

We did an example of using the properties of matrix operations so far to solve a matrix equation
of the form 2X +A = B for X.

Next, we discussed some properties of matrix multiplication: Given a scalar c, and matrices
A,B,C for which the following products defined,

• Associativity of multiplication. A(BC) = (AB)C

• Distributivity. A(B + C) = AB +AC and (A+B)C = AC +BC

• Associativity/Distributivity of scalar multiplication. c(AB) = (cA)B = A(cB)

We did an example in which we verified that associativity of multiplication held, and stated
that we can’t cancel matrices; i.e., if AC +BC, then it is not necessarily true that A = B.

We defined the n × n identity matrix I or In as the matrix with 1 along the diagonal, and
zeros everywhere else. We then stated a theorem on its properties: If A is an m× n matrix, then

1. AIn = A

2. ImA = A

We then did some examples using identity matrices, then defined powers of matrices, and gave
an example.

Finally, we defined the transpose of an m × n matrix A = [aij as an n ×m matrix AT that
has the rows of A as its column. In other words, the entry in the i-th row and j-th column is aji.

Lecture 5: Tuesday, September 4. After our quiz on row-echelon and reduced row-echelon
form, we discussed matrix operations.

If we denote a matrix by a variable, it is typically a capital letter, and if A is an m× n matrix,
then

A = [aij ] = [aij ]m×n

is shorthand for

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .
...

am1 am2 . . . amn

 .
Two matrices are equal if the have the same size, and the same entries.
If one of the dimensions of the matrix is 1, then we sometimes call it a vector; an m× 1 matrix

is called a column vector or column matrix, and a n × 1 matrix is a row vector/matrix.

These matrices are often called lower case bold letters; e.g., v =

2
3
6

 and w =
[
−2 5 0

]
.

Given two matrices A = [aij ] and B = [bij ], we can only add (or subtract) the matrices if
they have the same size (i.e., they are both m× n matrices, for some m and n), and their sum (or
different) is given by the sum (or difference) of the two coordinates:

A+B = [aij + bij ].
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For example, [
2 7
5 −1

]
+

[
−2 2
0 10

]
=

[
0 9
5 9

]
.

We can multiply any matrix by a scalar (any real number) by multiplying each of its entries by
that real number; e.g.,

3 ·
[
2 7
5 −1

]
=

[
6 21
15 −3

]
.

We can only multiply matrices A and B to obtain AB if the number of columns of A equals
the number of rows of B, i.e., if A is an m× n matrix, then B must be an n× p matrix, for some
p. The resulting matrix AB will then be an m× p matrix. If AB = [ci,j ]m×p, then cij is defined by
taking the dot product of the i-th column of A and the j-th row of B:

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =
n∑

k=1

aikbkj.

(Make sure you can draw a picture to explain this!)
For example, the product of a 2×2 and a 2×2 matrix is defined, and is a 2×2 matrix. Moreover,(

2 4
5 −1

)
·
(

1 −3
0 8

)
=

(
2 · 1 + 4 · 0 2 · −3 + 4 · 8

5 · 1 +−1 · 0 5 · −3 +−1 · 8

)
=

(
2 26
5 −23

)
.

As another example, the product of a 2× 3 and a 3× 4 matrix is defined and is a 2× 4 matrix.
For instance, [

7 0 −3
5 1 −1

]
·

 0 −11 5 1/7
1 1 1 1

100 π 0 0


equals[

7 · 0 + 0 · 1 +−3 · 100 7 · −11 + 0 · 1 +−3 · π 7 · 5 + 0 · 1 +−3 · 0 7 · 1/7 + 0 · 1 +−3 · 0
5 · 1 + 1 · 1 +−1 · 100 5 · −11 + 1 · 1 +−1 · π 5 · 5 + 5 · 1 +−3 · −1 5 · 1/7 + 1 · 1 +−1 · 0

]
or [

100 −77− 3π 35 1
−99 −54− π 26 12/7

]
.

Finally, we discussed turning a system of linear equations into an equality of matrices. To check
your knowledge, verify that the system

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm

can be written as one equation of matrices,

Av = b,

where

A =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

. . .
...

am1 am2 . . . amn bm

 ,v =


x1
x2
...
xn

 ,b =


b1
b2
...
bm

 .
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Lecture 4: Thursday, August 30. We started class by discussing free variables in more
detail, and writing the solution set of a system of linear equations parametrically, when there is
more than one parameter. For example, a system in variables x, y, z, w could be transformed, using
Gauss-Jordan elimination, into the augmented matrix

1 0 0 6 −1
0 0 1 7 1
0 0 0 0 0
0 0 0 0 0


corresponding to the system of equations

x+ 6z = −1

z + 7w = 1

Since there are four variables and two unknowns, we can start by assigning z to be free; let z = t
for t any real number. Then 7w = 1 − z, so that w = 1

7 −
1
7 t. Moreover, x = −1 − 6z = −1 − 6t

Finally, y can be free as well; let y = s, where s is a (possibly different than t) real number. Our
solutions are given parametrically by

x = −1− 6t

y = s

z = t

w =
1

7
=

1

7
t.

Next, we defined a homogeneous system of linear equations as a system that have the constant
0 on the right-hand side of every equation:

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

...

am1x1 + am2x2 + . . .+ amnxn = 0

We noticed immediately that a homogeneous system is always consistent, since there is always a
solution

x1 = x2 = · · · = xn = 0,

which is sometimes called the trivial (or obvious) solution.
Therefore, we can use our methods to determine whether this is the only solution, or whether

the system has infinitely many solutions. We also noticed that elementary row operations never
change the last column of the augmented matrix; it continues to have all zeros.

a11 a12 . . . a1n 0
a21 a22 . . . a2n 0
...

. . .
...

am1 am2 . . . amn 0

 .
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Next, we discussed applications of solving systems of linear equations. The first was finding the
equation of a polynomial that passes through given points. For example, we asked whether there
is a parabola going through the points

(−3, 1), (1,−2), and (5, 5).

If we write the parabola as
p(x) = a0 + a1x+ a2x

2,

then

1 = p(−3) = a0 − 3a1 + 9a2

−2 = p(1) = a0 + a1 + a2

5 = p(5) = a0 + 5a1 + 25a2

This is a system of linear equations in the variables a0, a1, a2, and we can solve it using our methods,
to find that the only solution is

a0 = −35

16
, a1 = −1

8
a2 =

5

16
.

We also discussed changing the degree of the polynomial (highest power of x appearing), and
shifting the polynomial to move to an easier system of equations.

Our second application was to Network Analysis. A network is given by branches and junctions,
where the total flow into a junction must equal the total flow out. Networks are used, for example,
in economics, in traffic analysis, and in electrical engineering.

We did an examples of transforming a network, with some values of flow variable, into a system
of linear equations. One specific application was to an electrical network, where Kirchoff’s Laws
can transform the network into a system of equations.

For Tuesday, make sure to know how to perform Gaussian elimination and Gauss-Jordan
elimination–these might pop up on a quiz!

Lecture 3: Tuesday, August 28. We started class by defining what it means for a matrix to
be in row-echelon form. There are three requirements:

1. Any row consisting only of 0’s (called a zero row) must be at the bottom of the matrix.

2. The first nonzero entry in a row that does not consist only of 0’s (called a nonzero row) is
1, which we call a leading 1.

3. The leading 1 in a higher nonzero row is to the left of the leading 1 in any lower row.

In addition, if there are only 0’s above and below all leading 1’s, then we say that the matrix has
reduced row-echelon form.

We gave several examples of matrices, and decided whether each has row-echelon form, and if
so, whether it has reduced row-echelon form.

Next, we described Gaussian elimination with back-substitution: Starting with a system
of equations,

1. Write the augmented matrix corresponding to the system.
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2. Use elementary row operations to rewrite the matrix in row-echelon form.

3. Write out the system of equations corresponding to the new matrix, and use back-substitution
to determine the solutions.

We did two examples of this process, noticing that a matrix in row-echelon form is amenable
to the back-substitution process. One of our examples ended up having exactly one solution, and
one had no solutions (so was inconsistent).

Next, we described the method of Gauss-Jordan elimination to turn a matrix in row-echelon
form into one in reduced row-echelon form, through an example. We noticed that this process can
lead to fractional coefficients in the final system of equations, but that it is very easy to solve a
system of equations coming from a matrix in reduced row-echelon form. We did an extra example,
where there were infinitely many solutions, and we wrote the solution set parametrically.

Lecture 2: Thursday, August 23. Today, we recalled the examples of an arbitrary system
of linear equations, an a system in row-echelon form, from last class. Here, the two systems of
equations are equivalent, meaning that they have exactly the same solution set. We saw that
row-echelon form has the big advantage that we can easily determine all solutions (or that there is
no solution) using back-substitution, and we did this using our example.

We turned an arbitrary system of linear equation into row-echelon form in three settings, and
then used the solution to determine all solutions. In the first case, there was exactly one solution,
in the second, there were no solutions, and in the third, there were infinitely many solutions. We
recalled that there precisely cover the three possibilities for the number of solutions in a solution
set of a system of linear equations. We also described geometrically what each of these mean.

In the second case, when there were no solutions, two of the equations in row-echelon form were
inconsistent, meaning that both cannot hold at once. Here, we call the system inconsistent as
well. In the third case, where there were infinitely many solutions, we could eliminate the third
equation and get an equivalent system of equations. In this case, we described the solution set
parametrically .

Next, we defined a m × n matrix, and gave several examples. Here, the matrix has m rows
and n columns. We defined the (main) diagonal of a matrix. From here, we described how any
system of equations

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm

has an associated coefficient matrix
a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .
...

am1 am2 . . . amn
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and augmented matrix 
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

. . .
...

am1 am2 . . . amn bm

 .
Finally, we saw that the operations we had been doing to turn a system of equations into row-

echelon form can also be performed on a matrix. These are called elementary row operations:

1. Interchange two rows.

2. Multiply a row by a nonzero constant.

3. Add a multiple of one row to another.

Before Tuesday’s class, make sure to check out examples in §1.2 of implementing these operations
to solve a system of linear equations, with an eye toward our computations earlier today!

Lecture 1: Tuesday, August 21. We began our course by detailing the course syllabus.
Next, we began to discuss linear equations. Take any linear equation y = Mx + B in one

variable, x, where M and B are constant real numbers–note that we will often use the notation
M,B ∈ R to indicate this. We can easily transform this equation into one of the form

a1x+ a2y = b

(what are a1, a2, and b in terms of M , and B?).
This generalizes to the definition of a linear equation in n variables x1, x2, . . . , xn:

a1x1 + a2x2 + . . .+ anxn = b

where a1, a2, . . . , an, and b are constant real numbers, called coefficients; in our new notation,
a1, a2, . . . , an ∈ R.

So, for example, a linear equation in three variables x, y, and z, has the form

a1x+ a2y + a3z = b.

We went through several examples of linear and non-linear equations. Notably, ex + 5y = 1 is
not linear, while ex+ 5y = 1 is linear, and sin(π)x− y = 0 is linear, while sin(πx)− y = 0 is not.
Neither is xy = −5.

We defined a solution to a linear equation in the natural way, and defined the solution set
as the set of all solutions. We described how to describe the solution set of a linear equation
parametrically, through two examples.

Next, we defined a system of linear equations a finite collection of linear equation. A solution of
a system is a value that is a solution to each equation, and the solution set is defined analogously.
A system of m linear equations in n variables is often written using the following convention for
subscripts of the coefficients:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm
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Considering the equations and graphs of two lines in two variables (what we’re used to), we
noticed that two linear can either intersect at exactly one point, be equations for the same line
(so intersect at infinitely many points), or be parallel (so never intersect). The same phenomenon
happens for any system of equations, in any number of variables! In other words, the solution set
either consists of exactly one point, infinitely many points, or no points at all.

Finally, we wrote a system of equations in two ways, one which we will call Row-Echelon form,
and we noticed this form has several advantages, one being that it is much easier to determine how
many solutions there are! We will start here next time, showing how to turn any system of equations
into this special form.
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