
Daily Update
MATH 146: Calculus II, Honors

Fall 2019

Class 72: Thursday, December 12. We did problems in teams to review the material
for the Final Exam.

Class 71: Wednesday, December 11. We worked in teams on computations involving
the complex numbers, and on the remaining problems on polar coordinates and integration
left over from Monday. Our complex number problems are the following:

• Compute (1) (1 + i)3, (2) i101.

• If z = 2 + 3i, compute z6z7.

• Find 5 complex numbers for which ‖z‖ = 1.

• Use the Maclaurin series for ex to compute e2πi and e
πi
2 .

• Factor the following polynomials completely: x2−2, x2 +2, x2 +x+1, x3 +x2 +2x+2.

Class 70: Tuesday, December 10. Today, we recalled that the rational numbers are
quotients of integers, and then proved that

√
2 is not rational!

We extend the rational numbers to the larger set of all real numbers. Unfortunately,
though, every quadratic equation doesn’t have a root that is a real number; for example,
any root r of the equation x2 + 1 must satisfy r2 = −1.

To remedy this, we define the number i as a square root of −1, so i2, and also (−1)2 = −1.
We immediately see that

(x− i)(x+ i) = x2 − i2 = x2 − (−1)− x2 + 1,

so i and −i are the roots of x2 + 1!
A complex number z is a number of the form a+ ib for real numbers a and b. We see

that i = 0 + 1 · i is a complex number, and so is any real number a = a+ 0 · i. The real part
of a complex number z = a + ib is a, and the imaginary part of z is b. We can graph the
real numbers in the 2-dimensional complex plane, where we label the x-axis as the real
axis, and the y-axis as the complex axis, and graph the point (a, b).

The complex conjugate of z = a + ib is z = a − ib. We can see that z · z is the real
number (a+ ib)(a− ib) = a2− i2b2 = a2 + b2, which we call the norm of z, and denote ‖z‖.
Note that the norm of z is the square of its distance from the origin if we graph it in the
complex plane!
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In order to use complex numbers for arithmetic, we need to add, subtract, multiply, and
divide them. We checked by hand that the sum (and so the difference) and product of two
complex is again a complex number:

(a+ ib) + (c+ id) = (a+ b) + i(c+ d)

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2d = (ac− bd) + i(ad+ bc).

We also want to be able to divide by any nonzero complex number a+ ib, i.e., when a and b
are not both zero. This is the same as the number 1

a+ib
being a complex number. We noticed

that since (a+ ib)(a− ib) = a2 + b2, we have that a− ib = a2+b2

a+ib
, so that

1

a+ ib
=

a− ib
a2 + b2

=

(
a

a2 + b2

)
− i
(

b

a2 + b2

)
,

a complex number!
Finally, we used the Maclaurin series for ex to show that eiθ = cos θ+i sin θ. In particular,

this means that eiπ = −1, i.e.,
eπi + 1 = 0.

This equation includes all our fundamental mathematical constants!

Class 69: Monday, December 9. We worked in teams today, finding areas and arc
lengths in polar coordinates. We will continue some of these problems tomorrow, and start
discussing complex numbers!

Class 68: Friday, December 6. Today, we used calculus to determine a formula for the
arc length of a curve! First, we considered a parametric curve given by x = x(t), y = y(t)
for a ≤ t ≤ b. We carefully determined (using, in one step, the Mean Value Theorem!) that
the arc length equals ∫ b

a

√
(x′(t))2 + (y′(t))2 dt. (1)

We did an example, finding the circumference of a circle of arbitrary radius r, a fact we had
always taken for granted!

Next, if y = f(x) is a function of x, we always have parametric equations x = t, y = f(x),
so our formula becomes ∫ b

a

√
1 + (f ′(t))2 dt,

where we are considering the arc length for x values from a to b.
We now considered the arc length of the graph of the polar equation r = 5 cos θ. We

know that this can be written parametrically as

x = r cos θ = 5 cos2 θy = r sin θ = 5 sin θ cos θ

2
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However, the integrand in (1) appeared very complicated. Instead of calculating it com-
pletely, we took a step back and noticed that if we have an arbitrary polar curve r = f(θ),
then we have parametric equations

x = f(θ) cos θ, y = f(θ) sin θ.

We fully computed the integrand in (1), and cancellation, along with the use of the identity
sin2 θ + cos2 θ = 1 allowed us to simplify this as∫ β

α

√
(f(θ)2 + (f ′(θ))2 dθ

assuming that θ ranges from α to a larger value β! We applied this to our polar curve to
obtain the answer 5π; in fact, this is a circle of radius 5/2! It is important to point out that
the entire curve was sketched out for 0 ≤ θ ≤ π, so the bounds of integration were 0 and π
(not 2π!).

Class 67: Thursday, December 5. Today we had a group quiz that tested graphing
in polar coordinates, moving between polar and Cartesian coordinates, and finding slopes of
tangent lines in the polar setting. Then we computed areas in the polar setting by working
on 11.4 #7, 11, 13, and 20 in groups.

Class 66: Wednesday, December 4. Today we discussed calculating areas in polar
coordinates, and derived the following formula for the area of the region bounded by a polar
curve r = f(θ), and the rays θ = α and θ = β, assuming that f(θ) ≥ 0 for α ≤ θ ≤ β:

1

2

∫ β

α

f(θ)2 dθ.

Throughout, we compared this to areas computed via integration using rectangular coordi-
nates.

We did several interesting examples of computing areas of certain regions in polar co-
ordinates. Then we noticed that if f1(θ) and f2(θ) are polar curves that are positive for
α ≤ θ ≤ β, and f2(θ) ≥ f1(θ) for these values of θ, then the area of the region bounded by
r = f1(θ), r = f2(θ), and the rays θ = α and θ = β, is

1

2

∫ β

α

(f2(θ)
2 − f1(θ)2)dθ.

We started computing an interesting geometric example that involved realizing a region as
the area between curves in polar coordinates. We’ll finish it next time!

3
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Class 65: Tuesday, December 3. Today, math Ph.D. student Justin Lyle and Amanda
Wilkens led the second Investigation Module, on the principle of mathematical induction!

Class 64: Monday, December 2. We worked in teams on problems regarding polar
equations, in including calculating tangent lines! We sketched the graphs of r = sin 2θ and
r = sin 3θ, and then found the points on the first with vertical tangent line, and the points
on the second with horizontal tangent line.

Class 63: Monday, November 25. Today we continued to discuss polar equations.
We determined inequalities in polar coordinates for different regions in the plane, and then
derived the formula r = d sec(θ−α) for the line with point closest to the origin (d, α), written
in polar coordinates. We applied this formula in an example.

We then sketched the graph of r = θ, and then turned to asking where the graph of
r = sin θ has a horizontal tangent line. We realized that if r = f(θ) is a polar curve, then it
has parametric representation

x = f(θ) cos θ y = f(θ) sin θ

where 0 ≤ θ ≤ 2π is our parameter. Then

dy

dx
=

(
dy
dθ

)(
dx
dθ

) =
f(θ) cos θ + f ′(θ) sin θ

−f(θ) sin θ + f ′(θ) cos θ
.

We used this formula to address our question, and then sketched the curve r = sin θ to check
our answer. Finally, we graphed r = sin(2θ) in groups.

Class 62: Friday, November 22. We introduced and studies the notion of polar
coordinates. Every point in the plane can be represented in Cartesian, or “rectangular,”
coordinates as P = (x, y), but can be represented in polar coordinates (r, θ), where r is
the distance of P from the origin, and θ is the angle between the positive x-axis and the line
passing through P and the origin.

We plotted several points in polar coordinates, and noticed that (r, θ) = (r, θ + 2πk) for
any integer k. By convention, if r > 0, (−r, θ) is the reflection of (r, θ) through the origin,
i.e., (−r, θ) = (r, θ + π). Any point of the form (0, θ) is the origin.

Given a point (r, θ) in polar coordinates, we computed geometrically that its representa-
tion in (x, y) in Cartesian coordinates is given by x = r cos θ and y = r sin θ.

On the other hand, given (x, y) in Cartesian coordinates, we showed that its polar coor-
dinates (r, θ) satisfy

r2 = x2 + y2 and tan θ = y/x.

4
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However, we pointed out, and illustrated this point with an example, that θ does not nec-
essarily equal arctan(y/x)–we must consider the quadrant that the point lies in in order to
find its polar angle.

We noticed that the graph of the polar equation r = 5 is the circle of radius 5 centered
at the origin (and so is r = −5!). On the other hand, the polar equation θ = π/4 is the line
through the origin of slope 1.

We graphed the polar equation r = 2 cos θ by plotting points from θ = 0 to 2π in
increments of π/4, and noticed that it looked like a circle of radius 1 centered at the Cartesian
point (1, 0). Then we converted its equation, using the identities determined earlier, to the
Cartesian equation (x − 1)2 + y1 = 1, verifying our conjecture! In this case, the graph is
symmetric about the x-axis, since whenever (r, θ) is on the graph, so is (r,−θ); we can check
this using the polar equation!

Next, we plotted points to sketch the graph of the polar equation r = 1 + sin θ, which is
an example of a cardiod.

Class 61: Thursday, November 21. We started class with a quiz on applying vector
geometry, which involved dot products and cross products.

We then turned to estimating the probability that a random variable is in the interval [1, 4]
using the standard normal distribution presented last time, which means that we estimated

1√
2π

∫ 4

1

e−x
2/2 dx

by using Taylor series, and the estimate for partial sums of alternating series.

Class 60: Wednesday, November 20. The first part of class today was focused on
applications of vector geometry to physics. First, we recalled how to find the force on cables
from which a mass is hanging.

After this, we turned to the use of the cross product to physics. We computed the force
on a moving charge with velocity v meters per second in a uniform magnetic field B (in
teslas) as F = q(v × B) newtons, where q = 1.6 · 10−19 coulombs. Then we computed the
torque about the origin due to a force F newtons acting on an object with a position vector
r (in meters) as τ = r× F N-m.

After this, we turned to the notion of probability, and mentioned what the probability
of two of us having the same birthday. We introduced the notion of a probability density
function p(x), a non-negative continuous function such that

∫ b
a
p(x) dx equals the probability

P (a ≤ X ≤ b) that a certain quantity X (called a random variable) is in the interval [a, b].
In particular,

∫∞
−∞ p(x) dx = 1.

We gave a few examples, and then showed that the function p(x) = 1
1+x2

is not a proba-
bility density function, but that q(x) = 1

π
· 1
1+x2

is one.
We introduced the standard normal density function p(x) = 1√

2π
e−x

2/2, and asked how
we would use it to find (or estimate) the probability that a random value lies in a certain
interval. The answer: Taylor series!

5
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Class 59: Tuesday, November 19. We worked in teams on problems involving equations
in three dimensions, including lines and planes.

Class 58: Monday, November 18. Today we discussed planes in R3. We noticed that
a plane is determined by 1) a point P0 = (x0, y0, z0) on the plane, and 2) a normal vector
n = 〈a, b, c〉 to the plane; i.e., a vector that is perpendicular to any vector on the plane. We
derived equations for such a plane, meaning that a point (x, y, z) is on the plane if and only
if it satisfies any one of the following equations:

• (Scalar equation 1) a(x− x0) + b(y − y0) + c(z − z0) = 0

• (Scalar equation 2) ax+ by + cz = d

• (Vector equation) n · 〈x, y, z〉 = n ·
−−→
P0P

where d = ax0 + by0 + cz0 = n ·
−→
0P0.

We found the equation of a given plane in several examples. In the first, we argued that
the given plane must be the xy-plane, and obtained the equation 2z = 0, which is equivalent
to the traditional equation z = 0. We noticed that given the equation of a plane, we can
scale both sides of the equation by a nonzero scalar to find another equation for the same
plane. We then showed that all planes with equations of the form

ax+ by + cz = d

are parallel to one another, as the value of d ranges through all real numbers. The unique
plane in this family that contains the origin is ax+ by + cz = 0.

Finally, we pointed out that given three points that are not collinear, meaning that they
do not all lie on any one line, then there is a unique plane containing the three points. We
then started working through an example in finding the equation of such a plane, given three
points. As an exercise, we were asked to check that the lines are not collinear, and find the
final answer. We needed to use the cross product to complete the problem!

Class 57: Friday, November 15. We finished computing the volume of a parallelepiped
defined by nonzero vectors u, v, and w in R3, which equals the norm of u · (v × w); this
vector is often called the vector triple product. We realized this vector as a determinant.

After a short quiz on vector geometry, we worked in teams on problems related to areas
and volumes using cross products.

6
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Class 56: Thursday, November 14. We continued our discussion of the cross product,
reviewing the important properties that we’ve already discussed We noticed the striking
property

w × v = −v ×w

holds. In particular, taking cross products is not commutative! We also described several
other properties of the cross product: the cross product of a vector with itself is the zero
vector, the cross product of two vector is zero if and only if one is a scalar multiple of the
other (or one vector is zero), we can “pull out scalars” from the cross product, and the cross
product and vector addition satisfy the distributive law.

From here, we investigated the cross product among pairs of the standard unit vectors
i, j,k, and applied it in an example.

We then determined how to compute the cross product of two vectors when written as
linear combinations of i, j, and k.

We then showed that the area of the parallelogram defined by two vectors v and w in
R3 equals ‖v ×w‖!

This means that the triangle obtained by connecting their tails has area 1
2
‖v ×w‖.

After this, we started investigating the volume of a parallelepiped (3-dimensional prism)
defined by three vectors in R3. We fill finish this computation next time!

Class 55: Wednesday, November 13. Today, Amanda Wilkens ed the class in working
in teams through problems involving the dot product and cross product of vectors.

Class 54: Tuesday, November 12. Guest lecturer Professor Daniel Hernández discussed
the cross product of two vectors in R3 with the class.

The definition of a cross product involves the notion of determinants. A 2×2 matrix has

the form
[
a b
c d

]
, and its determinant is

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

We then asked the fundamental question: Why is this called a determinant? What is it

determining? To answer this, we proved the following Theorem: The determinant
∣∣∣∣a b
c d

∣∣∣∣ is
zero if and only if one of 〈a, b〉 and 〈c, d〉 is a multiple of the other.

The determinant of a 3× 3 matrix

a1 b1 c1
a2 b2 c2
a3 b3 c3

 is

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− b1 ∣∣∣∣a2 c2
a3 c3

∣∣∣∣+ c1

∣∣∣∣a2 b2
a3 b3

∣∣∣∣ .
Now, the cross product of v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉 is defined to be the

vector

v ×w =

∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ =

∣∣∣∣v2 v3
w2 w3

∣∣∣∣ i +

∣∣∣∣v1 v3
w1 w3

∣∣∣∣ j +

∣∣∣∣v1 v2
w1 w2

∣∣∣∣k.
7
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In particular, the cross product of two vectors is a vector, while we know that the dot
product of two vectors is a scalar !

We did some examples, and then gave a geometric description of the cross product v×w
of nonzero vectors: It is the unique vector satisfying the following three properties:

1. v ×w is orthogonal to both v and w.
2. v ×w has length ‖v‖‖w‖ sin θ, where θ is the angle between v and w.
3. The vectors v,w,v ×w form a right-handed system. That is, the direction of v ×w

is given by the right-hand rule.

We elaborated on the right-hand rule, and presented a bunch of (poorly-drawn) examples
that showed how to figure out the direction of v×w. We used this geometric description to
find the cross product in an example, rather than using the formula, to verify that 〈2, 0, 0〉×
〈0, 1, 1, 〉 = 〈0,−2, 2〉, a formula we had verified earlier in class.

Class 53: Monday, November 11. Today we introduce the dot product of two vectors
in R3: Given v = 〈v1, v2v3〉,w = 〈w1, w2, w3〉 ∈ R3,

v ·w = v1w1 + v2w2 + v3w3.

In particular, the dot product of vectors is a scalar!
We did some examples, and noticed that the dot product of a vector with itself is the

square of its length: v · v = ‖v‖2. We also noted some other properties of the dot product:
the dot product of any vector with the zero vector equals zero, the operation is commutative,
we can “pull out scalars,” and the distributive law holds with respect to the dot product and
vector addition.

By convention, the angle between two nonzero vectors v and w is 0 ≤ θ ≤ π
2
, and in fact,

v ·w = ‖v‖‖w‖ cos θ.

We noticed that this means that

θ = arccos

(
v ·w
‖v‖‖w‖

)
.

We say two nonzero vectors v and w are perpendicular or orthogonal, and write v ⊥
w, if the angle between them is θ = π

2
, which we determined is the same as saying that their

dot product is zero! We checked that the standard basis vectors are pairwise perpendicular,
and then investigated in other examples whether given vectors are perpendicular to one
another.

We also noticed that the angle between vectors is obtuse if their dot product is negative,
and is acute if it is positive.

We set out to find an orthogonal vector to a given vector, and were able to find many.
Then we defined the projection of a nonzero vector v onto a vector u,

u||v =

(
u · v
‖v‖2

)
v =

(
u · v
‖v‖

)
ev.

8
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This vector has a natural graphic description, which we illustrated. In particular, u||v is
parallel to u.

Finally, we wrote the decomposition of a vector u in terms of a nonzero vector v:

u = u||v + u⊥v.

We solved for u⊥v in terms of the other vectors, and checked that it is, in fact, perpendicular
to u! Hence and vector can be written as the sum of a vector parallel to it, with a vector
that is perpendicular to it.

Class 52: Friday, November 8. Today we worked in groups on many problems regarding
vectors in R2 and R3, and equations in R3.

Class 51: Thursday, November 7. We discussed 3-dimensional space, R3, today. We
talked about the right-hand rule convention. Then we discussed distances and graphs in
R3, including formulas for planes, spheres, and cylinders. We also discussed vectors in R3,
parameterizations of lines, and checking properties of lines.

Class 50: Wednesday, November 6. Today, we started our first Investigation Module,
led by mathematics Ph.D. student Amanda Wilkens! The module is on the formal math-
ematical definition of the limit of a sequence. Amanda and another Ph.D. student, Justin
Lyle, created the module.

Class 49: Tuesday, November 5. We started class by defining a linear combination
of vectors v1, . . . ,vn in R2: a vector of the form

λ1v1 + λ2v2 + · · ·+ λnvn,

where all of the λi are real numbers, or scalars.
We wrote a given vector as a linear combination of two other vectors by setting up a

system of equations obtained by setting the components equal. We also investigated how to
visualize the linear combination of two vector graphically.

We noticed immediately that every vector can be written as a linear combination of the
vector i = 〈1, 0〉 and j = 〈0, 1〉.

We conjectured that given a vector v, there is another vector with the same direction,
with length 1; i.e., a unit vector. We determine that this vector is unique and equals

ev =
1

‖v‖
· v.

9
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Note that 1
‖v‖ is just a scalar!

We drew a picture, and noticed that ev has its endpoint on the unit circle, so that by
this fact, and the equation above,

v = ‖v‖ev = ‖v‖〈cos θ, sin θ〉

assuming that θ is the angle between v and the positive x-axis.
Finally, using vector arithmetic, we set up and solved a problem of finding the force on

each of two ropes, with a mass hanging from them.

Class 48: Monday, November 4. Today we introduced vectors in the real 2-
dimensional plane R2. A vector v in R2 has a base point, and an endpoint, so has a direction
and length, ormagnitude, denoted ‖v‖. Note that the zero vector, denoted 0, has length
0. Two vectors are parallel if the lines extending from them are parallel. We say that two
vectors are equivalent if they are translations of one another, so have the same length and
direction.

If a vector v ∈ R2 has basepoint P = (a1, b1) and endpoint Q = (a2, b2), the x-
component of v is a2−a1, and its y-component is b2−b1. In other words, if v is translated
to have basepoint the origin O, these are the x- and y-coordinates of the endpoint. In this
notation, ‖v‖ =

√
(a2 − a1)2 + (b2 − b1)2

We did an example, deciding that two vectors are not equivalent by verifying that one of
their components were not equal.

We add two vectors v and w by adding their components. Graphically, v + w is the
vector obtained in the following way: put a translate of w at the endpoint of v, and take
the vector with the basepoint of v and the endpoint of the translate of w. (Here, the roles
of v and w can be switched!)

We also discussed how to scale a vector by a real number λ: λv is the vector whose
components are both scaled by λ. Graphically, the new vector has length |λ| times the
original one, and points in the same direction as the original one precisely if λ is positive.

Finally, we noted that vector addition is commutative and associative, and scalar mul-
tiplication and addition together satisfy the distributive law.

Class 47: Friday, November 1. We started class by reviewing how to determine power
series representations of certain functions: The first is to start with known power series
representations for given functions, valid for inputs in their intervals of convergence, and
then manipulate them by substituting, adding, subtracting, multiplying, differentiating, or
integrating them to get a new power series. We worked through the last problems from
yesterday’s group work to see examples of this.

The other method is to find the Taylor series centered about an x-value. The issue here
is that the Taylor series need not always agree with the function value in its interval of

10
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convergence! We had not seen an example of this, which is the main goal of class today. The
function we studied is

f(x) =

{
e−

1
x2 x 6= 0

0 x = 0

We determined that this function is continuous, and that as x → ±∞, f(x) → 1. We
sketched a graph of f(x), and then worked toward computing its Maclaurin series. We
noticed that f is differentiable, and after taking some derivatives for x 6= 0, we noticed that
for x 6= 0,

f (n)(x) =
P (x)ee

− 1
x2

xr

for some polynomial P (x) and integer r ≥ 2! In fact, this will allow us to show that all
derivatives of f exist at x = 0, and equal 0! In particular, the Maclaurin series for f is the
power series where all coefficients are 0, which converges to 0 for all x. However, it only
agrees with f(x) for x = 0!

Class 46: Thursday, October 31. Today we introduced the binomial series, which
converges to the function (1 + x)a for −1 < x < 1: Given a real number a and an integer
n ≥ 0, we define (

a

n

)
=
a(a− 1)(a− 2) · · · (a− n+ 1)

n!

where if n = 0, we interpret this value as
(
a
0

)
= 1. Then for |x| < 1, the binomial series is

(1 + x)a = 1 +
a

1!
x+

a(a− 1)

2!
x2 +

a(a− 1)(a− 2)

3!
x3 + · · · =

∞∑
n=0

(
a

n

)
xn.

In groups, we then found the binomial expansion where a = 1
2
, i.e., a power series represen-

tation for
√

1 + x for |x| < 1. We finished the last two problems from last time, and then
worked on #46 and #65 in section 10.7.

Class 45: Wednesday, October 30. We worked in teams today in solving problems on
power series, especially related to Taylor series:

• Find the first five terms of a power series representation for f(x) = ex sinx. For what
x values does the power series represent f(x)?

• Find the Maclaurin series for ln(1 + x) and its radius of convergence.

• Find a power series expansion for x4 − x3 + 16x2 − 11 + ln(1 + x).

• Find a power series expansion for f(x) =
sin(x2 )

3
. For what x values does the power

series represent f(x)?

11
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• Determine what functions the following power series represent:

∗ 1 + x3 + x6

6!
+ x9

3!
+ x12

4!
+ · · ·

∗ x4 − x12

3
+ x20

5
− x28

7
+ · · ·

Class 44: Tuesday, October 29. Today, we reviewed how to obtain a power series
representation of a function using the properties of a geometric series, for the functions

f(x) =
1

1 + x2
and g(x) =

1

1− 2x
.

Note that the radius of convergence of power series for the first series is 1, while for the
second, it is 1/2!

We noticed that we can’t use this idea to find a power series representation for f(x) =
cosx, so we use a Taylor series. Yesterday, we derived the Maclaurin series for this function,
and we wrote this as

1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞∑
n=1

(−1)n

(2n)!
x2n.

We showed, using the theorem from last time, that since all derivatives of cosx are bounded
in absolute value by 1, this series represents cosx for all values of x!

We noticed that we could do the same for sinx to get the representation

x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
n=1

(−1)n

(2n+ 1)!
x2n+1

for all real numbers x
We went through all the details in finding the Maclaurin series for f(x) = x3, which

turned out the be (unsurprisingly)

0 + 0 · x+ 0 · x2 + 1 · x3 + 0 · x4 + 0 · x5 + · · ·

We also know the Maclaurin series for ex, and we used this to construct a power series
expansion for g(x) = xex.

From here, we turned to the question of whether we can use the expansion for ex to
get one for ex2 : The answer was yes, by substituting x2 for x. However, this does not
work for esinx, since we don’t get a power series after substituting! On the other hand, we
noticed that it may be possible to find a power series representation for ex sinx via “infinite
distributing”–we’ll work on this next time in groups!

Class 43: Monday, October 28. Today we recalled the definitions of the radius/interval
of convergence of an infinite series, and the definition of a power series centered at c. A Taylor
series centered at c = 0 is called a Maclaurin series.

12
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We stated a theorem that if a function f(x) is represented by a power series for all x
in the interval I = (c−R, c+R) for some R > 0, then this power series must be the Taylor
series. However, it is not necessarily the case that the Taylor series must converge to the
function’s value!

We found the Maclaurin series for f(x) = ex:

1 + x+
x2

2
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!
.

and found that its radius of convergence is ∞. However, we did not show that the series
represents the function for all real numbers x.

In general, there is no guarantee that the Taylor series converges to f(x), even if it
converges! In fact, the Taylor series converges to f(x) if and only if lim

k→∞
Rk(x) = 0, where

Rk(x) is the k-th remainder series :
Given a Taylor series

T (x)
∞∑
n=1

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · · ,

the k-th Taylor polynomial is

k∑
n=1

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · ·+ ak(x− c)k

and the k-th remainder is

Rk(x) = T (x)− Tk(x) =
∞∑
n=k

ak+1(x− c)k+1 + ak+2(x− c)k+2 + · · ·

We stated the following theorem: If there is some number K > for which

|f (k)(x)| ≤ K

for all k ≥ 0 and all x in the interval I = (c−R, c+R), then f is represented by its Taylor
series in the interval I.

We wrote out the first few terms of the Maclaurin series for f(x) = cosx, and then
noticed that the condition in the theorem above is satisfied for K = 1. As homework, find
an expression for the general term of this Maclaurin series!

Class 42: Friday, October 25. Today we had another guest lecture by Professor
Hernández. We recalled the key ideas from last lecture, and in groups, we were asked to find
a power series expansion and radius of convergence for 1

(3−x)2 with center c = π. Students
worked in groups together to solve this, and everyone had the right approach: First, find
the power series expansion for 1/(3 − x) with center c = π, and then apply term-by-term

13
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differentiation to get the expansion for 1/(3 − x)2. After this, we presented an example of
how to use term-by-term integration to derive a power series expansion for tan−1(x); this
time, the key observation was that the derivative of tan−1(x) is 1/(1+x2), which we can find
a power series expansion for. After that, we applied term-by-term integration, and solved
for the constant of integration that popped up.

After this, we asked the following Question: Is there any pattern to the terms an that

have popped up when we’ve been writing f(x) =
∞∑
n=0

an(x − c)n the past couple of days?

One pattern is clear: If we let x = c on both sides, then we get f(c) = a0. In fact, by
applying term-by-term differentiation to the power series, we were able to prove the following
Theorem: If f can be written as a power series

f(x) =
∞∑
n=0

an(x− c)n

with radius of convergence R, then

an =
f (n)(c)

n!

where f (n) denotes the n-th derivative of f . Motivated by this, we then presented the
Definition: The Taylor series of a function f with center c is the power series

T (x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n.

The previous theorem then says that if f can be written as a power series with center c,
then that power series must be the Taylor series of f ! We then revisted an earlier example
to make sure that this was the case.

Class 41: Thursday, October 24. Today we had another guest lecture by Professor
Hernández. We started off by recalling the key points from last lecture, especially the power

series expansions 1
1−x =

∞∑
n=0

xn and 1
1+x

=
∞∑
n=0

(−1)nxn, both of which converge for |x| < 1.

Using these two series, we were able to describe a number of other functions in terms of
power series, and also compute the radius of convergence for these series. For instance, we
showed that

1

2 + x2
=
∞∑
n=0

(−1)nx2n

2n+1

and that this series had radius of convergence R =
√

2. After going over more examples like
this, we then shifted our attention to figuring out how to find power series descriptions with
center different than 0. For instance, we showed that

1

1− x
=
∞∑
n=0

(−1)n(x− 4)n

3n+1

14
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which is a power series centered at 4 with radius of convergence R = 3.
After this, we stated an important theorem that tells us we can differentiate and integrate

power series term-by-term. Theorem: Consider F (x) =
∑∞

n=0 an(x − c)n, a power series
centered at c with radius of convergence R. If x lies within the interval of convergence
(c−R, c+R), which we interpret to be all of R when R =∞, then the following hold.

1. F ′(x) =
∑∞

n=0 nan(x− c)n−1.

2.
∫
F (x)dx =

∑∞
n=0

an(x−c)n+1

n+1
.

We pointed out how these would be trivial if we had a finite sum instead of a series, and we
used the formula for F ′(x) to get a power series formula for 1

(x−1)2 . We’ll show how to use
the formula involving integrals tomorrow. We concluded the lecture with Quiz 8.

Class 40: Wednesday, October 23. Today, the class worked on calculating power series
and radii of convergence with Professor Międlar.

Class 39: Tuesday, October 22. Today we had a guest lecture by Professor Hernández.
Today’s lecture was all about power series. Recall that a power series is an infinite series
of the form

F (x) =
∞∑
n=0

an(x− c)n.

We call the term c in this expression the center of the power series. After giving this
example, we then went over a bunch of examples, and in each of these examples, we plugged
in various x values to see that for some values of x, the power series F (x) converges, and for
other values of x, it diverges. Indeed, if F (x) =

∑∞
n=0

xn

3n
, we saw that F (2) converged, but

that F (π) diverged. In fact, for this same power series, we saw that F (x) converged to 3
3−x

if |x| < 3, i.e., if −3 < x < 3. We then stated the following result.
Theorem: Every power series F (x) =

∑∞
n=0 an(x − c)n has a radius of convergence R.

The radius of convergence R either satisfies 0 ≤ R <∞ or R =∞.

1. If 0 ≤ R <∞, then F (x) converges absolutely for every x satisfying |x− c| < R, i.e.,
for every c−R < x < c+R.

2. If R =∞, then F (x) converges absolutely for every real number x.

As a consequence of this theorem, we noted that to completely describe the set of all
x-values for which F (x) converges, we must calculate the radius of convergence R (e.g., using
the Ratio Test), and then test for convergence at any endpoints. We then did this for the
power series

∑∞
n=0

(−1)n(x−5)n
4nn

to see that it converged for every 1 < x ≤ 9. Next, we applied
this logic to the power series

∑∞
n=0

x2n

(2n)!
to see that it converged (absolutely) for every real

number x. In other words, in this case, the radius of convergence was infinity.
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Class 38: Monday, October 21. The class worked on problems involving the ratio and
root tests with Professor Międlar.

Class 37: Friday, October 18. Motivated by series that don’t have all non-negative
terms, so that many of the tests we’ve developed don’t apply, we presented the ratio test:
Suppose that

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, or that the sequence {

∣∣∣∣an+1

an

∣∣∣∣} diverges to infinity.

• If ρ < 1, then
∑
an converges absolutely.

• If ρ > 1 or
∣∣∣∣an+1

an

∣∣∣∣ diverges to infinity, then
∑
an diverges.

• If ρ = 1, then the test is inconclusive (the series can have any possible convergence
behavior).

We applied this test to the series
∞∑
n=1

3n

n!
and

∞∑
n=1

.0001n

n2 to determine their convergence, and

noticed that the test is inconclusive for both
∞∑
n=1

1
n
and

∞∑
n=1

1
n2 , despite them having different

convergence behavior.

We then approached the series
∞∑
n=1

(
n

5n−3

)n and looked into applying the ratio test; the

expression
∣∣∣∣an+1

an

∣∣∣∣ was pretty complicated Instead of pursuing this further, we presented the

root test: Suppose that
L = lim

n→∞
n
√
|an|

exists, or that the sequence { n
√
|an|} diverges to infinity.

• If L < 1, then
∑
an converges absolutely.

• If L > 1 or
∣∣∣∣an+1

an

∣∣∣∣ diverges to infinity, then
∑
an diverges.

• If L = 1, then the test is inconclusive (the series can have any possible convergence
behavior).

We used this to determine that the series
∞∑
n=1

(
n

5n−3

)n converges, but that ∞∑
n=1

(
7n

5n−3

)n diverges.
Moreover, the root test applied to

∞∑
n=1

(
5n

5n−3

)n is inconclusive!

Finally, we wrote several different series on the board, and discussed some basic ideas on
how to determine which test (or combination of tests) to use.
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Class 36: Thursday, October 17. Today, we reviewed what it means for a series to be
absolutely convergent, and reminded ourselves that any absolutely convergent series is
automatically also convergent. We call a series conditionally convergent if it is convergent
but not absolutely convergent. Our theory so far implies that every series can be classified
as one of the following:

• absolutely convergent, or
• conditionally convergent, or
• divergent (in which case, the series of absolute values of the terms also diverges).

We then discussed the alternating series test (AST): If the sequence {bn} is positive,
decreasing, and has limit 0, then the alternating series

S =
∞∑
n=1

(−1)nbn = b1 + b2 + b3 − b4 + · · ·

converges. Moreover, when S is approximated by the partial sum SN , the error is less than
the first omitted term bN+1; i.e.,

|S − SN | < bN+1.

We applied this to show that the series
∞∑
n=1

(−1)n−1
√
2n

and
∞∑
n=0

(−1)n
n

both converge. We also

estimated series using the second part of the AST statement.
Finally, we worked in groups on problems related to this material.

Class 35: Wednesday, October 16. We presented the series
∞∑
n=1

1√
n·3n to remind

ourselves of the tests we have discussed that can be used to decide whether (eventually)
nonnegative series converge or diverge (i.e., the terms of the series are eventually all non-
negative). Both the integral test and the comparison test ended up working to show
that this series converged, but in the comparison test, we needed to compare to the series
∞∑
n=1

1
3n

(which converges since it is a geometric series with r = 1
3
< 1) rather than

∞∑
n=1

1√
n

(which diverges by the p-series test).
Through our review of the comparison test, we discussed in detail the fact that the

convergence or divergence of a series does not depend on the first terms, so we may use some
tests even when the indices of the series do not start at the same integer.

We then presented the example
∞∑
n=1

n3

n5−n−1 , and noticed that the series is positive after the

first term. However, though we thought that it should behave similarly to
∞∑
n=1

n3

n5 =
∞∑
n=1

1
n2 ,

which converges by the p-series test. However, the comparison was the wrong direction, i.e.,

an =
n3

n5 − n− 1
>
n3

n5
=

1

n2
= bn

17
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so we could not use the comparison test.
However, we can use another test called the limit comparison test: Suppose that

∑
an

and
∑
bn are series with (eventually) nonnegative terms, and let

L = lim
n→∞

an
bn
.

Then

• If L > 0 is finite, then
∑
an converges if and only if

∑
bn converges.

• If an
bn
→∞ and

∑
an converges, then

∑
bn converges.

• If L = 0 and
∑
bn converges, then

∑
an converges.

We found that L = lim
n→∞

an
bn

= 1 > 0 in our example above, so that
∞∑
n=1

an =
∞∑
n=1

n3

n5−n−1

converges since
∞∑
n=1

an =
∞∑
n=1

1
n2 does.

We used the limit comparison test to find that
∞∑
n=1

∞ en+n
e2n−n2 converges (we needed L’Hôpital’s

rule!), and gave the exercise to show that
∞∑
n=1

√
3n2 + 9 diverges by comparing it to either

∞∑
n=1

1
n
or

∞∑
n=1

1√
3n2

=
∞∑
n=1

1√
3n
.

Even though the limit comparison test looks more powerful than the original comparison
test (which we will now sometimes call the direct comparison test), the direct comparison
test can be used in some cases when the limit version does not apply; e.g., sometimes when
the terms of a series are very complicated, but admit a comparison with simpler terms.

From here, we defined a series (now arbitrary, i.e., possibly having some negative terms)
to be absolutely convergent if the series

∑
|an| converges.

We showed that the series
∞∑
n=1

(−1)n−1

n2 is absolutely convergent since
∣∣∣ (−1)n−1

n2

∣∣∣ = 1
n2 and

∞∑
n=1

1
n2 converges. However,

∞∑
n=1

(−1)n−1

n
is not absolutely convergent.

In fact, it is a theorem that an absolutely convergent is always convergent! Hence we

know that the series
∞∑
n=1

(−1)n−1

n2 converges, though none of our series convergence tests apply

since it is not a nonnegative series.
We defined an alternating series as one that alternates between positive and negative

terms, our example
∞∑
n=1

(−1)n−1

n2 = 1− 1
4

+ 1
9
− 1

16
+ 1

25
+ · · · is an alternating series.

Class 34: Friday, October 11. We started class with a short quiz on what it means
for an infinite series to converge. Next, we focused on looking at series with positive or
nonnegative terms. We call a series

∞∑
n=1

an

18
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positive if all am > 0, and nonnegative if all an ≥ 0. Note that throughout class today, we
will write series to begin at index n = 1, but we can modify statements to deal with those
starting at other indices.

We noticed that in these cases, if {SN} is the sequence of partial sums, then either:

1. SN is bounded above, in which case the series converges, or

2. SN is not bounded above, in which case it diverges to infinity.

From here, we presented the integral test for the converges of infinite series: Let an =
f(n) for a function f that is nonnegative, decreasing, and continuous for all x ≥ 1. Then

1. If
∞∫
1

f(x) dx converges, then the series
∞∑
n=1

an converges.

2. If
∞∫
1

f(x) dx diverges, then the series
∞∑
n=1

an diverges.

We gave arguments involving Riemann sums that explain why these hold.
As a consequence of the integral test, we have the p-series test for series:

∞∑
n=1

1

np
converges if p > 1, and diverges if p ≤ 1.

As a consequence, we concluded that the so-called harmonic series
∞∑
n=1

1
n
diverges!

Finally, we pointed out that from the integral test for series, along with the comparison
test for improper integrals, we obtain a comparison test for series: If 0 ≤ an ≤ bn for n
large enough, then regardless of where the indices start,

1. If
∑
bn converges, then

∑
an converges, and

2. If
∑
an diverges, then

∑
bn diverges.

Finally, we worked in teams to determine the convergence or divergence of different series,
using the material learned today, and from previous classes. When the series converged, we
tried to find its value.

Class 33: Thursday, October 10. Today we determined which geometric series
∞∑
n=0

crn converge and which diverge by determining a formula for the N -th partial sum of

the series, SN = c(1−rN+1)
1−r (as long as r 6= 1). If |r| < 1, then the series converges and equals

c
1−r , but if |r| > 1, then the series diverges. We used this to show that 1

2
+ 1

4
+ 1

8
+ · · · = 1

in a new way, and then we used it to show that
∞∑
n=0

3+4n

7n
converges, and find its value.

Next, we stated the divergence test for infinite series, which says that if limn→∞ an 6= 0,
then an infinite series

∑
an (starting at any integer index) diverges! We saw that this means

∞∑
n=1

7n
10n+1

and
∑

n=1∞
(−1)n−1 diverge. (The latter also diverges since it is a geometric series!)
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Class 32: Wednesday, October 9. Today we started by showing that an = 3
√
n+ 1−n

diverges by showing that it is not bounded below, and then we showed that the sequence

a1 =
√

2, a2 =

√
2
√

2, a3 =

√
2

√
2
√

2, . . .

is bounded above by 2, and increasing, so it converges!

After this, we introduced the notion of an (infinite) series, denoted
∞∑
n=1

an or
∞∑
n=k

an for

any integer k. For instance, if an = 1
2n
, then we are considering

∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+ · · ·

Our goal for today is to define what this means.
Given a sequence {an} indexed by n ≥ 1, we define the associated sequence of partial

sums {SN} as:

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

SN = a1 + a2 + · · ·+ aN

i.e., to find SN , we add up all terms of the original sequence until n = N .
We computed in our example where an = 1

2n
that SN = 1− 1

2N
.

Next, we gave the following definition: An infinite series
∞∑
n=1

an converges if the limit of

the sequence of partial sums exists (and equals a finite number), i.e., lim
N→∞

SN = S for some
real numbers S. In this case, we say that the series equals S, and write:

∞∑
n=1

an = S.

If the sequence of partial sums grows without bounds, we say that
∞∑
n=1

an diverges to

infinity, and if lim
N→∞

SN does not exist, we say that lim
N→∞

SN = S diverges.

We used this definition to show that
∑∞

n=1
1
2n

converges and equals 1. Then we found
that

∑
n=1∞

1
n(n+1)

= 1 by using the fact that an = 1
n(n+1)

= 1
n
− 1

n+1
to find that SN = 1− 1

N+1
,

so it limits to 1.
Finally, we stated the fact that convergent series satisfy linearity properties.

20



Fall 2019 MATH 146 Daily Update 21

Class 31: Tuesday, October 8. Throughout the class period, we worked on using
techniques (including applying different theorems) to decide whether different sequences
converge or diverge, and attempt to find their limit if they have one.

Class 30: Monday, October 7. We started class by stating the fact that if f is a
continuous function and a sequence {an} converges to a real number L, then the sequence
{f(an)} has limit f(L).

From here, we defined what it means for sequences to be bounded above, bounded
below, bounded, and unbounded. We stated the following theorem: If a sequence
converges, then it must be bounded. However, we came up with several different examples
where the converse does not hold.

We defined increasing, decreasing, nonincreasing, and nondecreasing sequences;
we say that a sequence is monotonic if it has any of these properties.

Finally, we stated the following theorem, which essentially says that monotonic bounded
sequences converge:

• If {an} is eventually nondecreasing and an ≤M for n large enough (in particular, the
sequence is bounded above), then the sequences converges and its limit is at most M .

• If {an} is eventually nonincreasing and an ≥ m for n large enough (in particular, the
sequence is bounded above), then the sequences converges and its limit is at least m.

We also had a quiz on improper integrals.

Class 29: Friday, October 4. We continued to discuss sequences, giving several examples
that all had the form of a geometric sequence, i.e., one of the form crn for some constants,
c and r. We found the limit of a geometric sequence depending on these values.

Next, we stated the limit laws for sequences, which we will apply frequently.
After this, we turned to the question of whether the sequence an = sin(n)

n
has a limit, and

introduced the squeeze theorem for sequences to apply and conclude that its limit is 0!
After this, we introduced factorials of nonnegative integers, and used the squeeze theo-

rem to prove that the sequence bn = 5n

n!
limits to 0.

We pointed out that if limx→∞ f(x) exists, then the sequences that “matches up” with
this function an, i.e., an = f(n), has the same limit. We saw an example of this.

Class 28: Thursday, October 3. We started class by finding appropriate comparison
functions in some challenging examples, to show that a given improper integral converges or
diverges.

Next, we introduced the notion of an (infinite) sequence. We discussed explicit and
recursive formulas, the domain/index set of a sequence, and the graph of a sequence, through
many examples.
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We say that a sequence {an} converges to limit L, and write

lim
n to∞

an = L or an → L

if an gets as close as desired to L if we make n large enough. If no limit exists, we say that
{an} diverges, and if the terms an grow without bound, we say that the sequence diverges
to infinity. We went through our examples, and studied the notion of a limit in detail.

Class 27: Wednesday, October 2. In teams, we worked on deciding whether a given
improper integral converges or diverges, and also tried compute the value of an improper
integral if it converges. However, we noticed that this is not possible if we simply conclude
that an integral converges via a comparison. Many of the problems are taken from homework,
so that we could get caught up after the midterm!

Class 26: Tuesday, October 1. Today, we finished our calculation from Friday, deciding
when integrals of the form

∫∞
a

dx
xp

converge or diverge, for p a constant. We found that for
a > 0, ∫ ∞

a

dx

xp
=

{
diverges to ∞ if p ≤ 1

converges and equals 1
1−pa

1−p if p > 1

We reminded ourselves that an integral that is improper due having both −∞ and ∞
as endpoints must be split up into two integrals. We found that

∫∞
−∞ e

−x dx diverges, since∫ 0

−∞ e
−x dx diverges.

We then wrote
∫∞
0
xe−x dx as a limit, and found, using L’Hôpital’s rule, that the integral

converges and equals 1.
We considered the integral

∫ 1

0
dx
x
, and noticed that we cannot just plug the endpoints

into the antiderivative via the Fundamental Theorem, Part I; in fact, x = 0 is not even in
the domain of the integrand! In fact, this integral is also improper for this reason, and we
define ∫ 1

0

dx

x
= lim

R→0+

dx

x
.

We found that the limit approaches infinity, so that this improper integral diverges to infinity.
We then turned to the integral

∫ 3

0
dx

(x−1)3 , and notice that although the integrand is defined
at the endpoints, it is not defined at the point x = 1 inside the interval of integration [0, 3].
We must break up the integral at the “bad point,” and turn each resulting improper integral
into a limit. We say that the original integral converges if both limits exist:∫ 3

0

dx

x
=

∫ 1

0

dx

(x− 1)3
+

∫ 3

1

dx

(x− 1)3
=

(
lim
R→1−

∫ R

0

dx

(x− 1)3

)
+ lim

S→1+

(∫ 3

S

dx

(x− 1)3

)
assuming both limits exist (do they?).
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We stated the convergence and divergence of integrals of the form
∫ a
0

1
xp
dx for a > 0:∫ a

0

dx

xp
=

{
converges and equals 1

1−pa
1−p if p < 1

diverges to ∞ if p ≥ 1

We then used this to show that
∫∞
1

dx√
x3+4

converges, using the fact that 1√
x3+4

< 1√
x3

=
1

x3/2
and

∫∞
1

dx
x3/2

converges by our conclusion above. To do so, we used the Comparison
Test for improper integrals: Suppose that f and g are continuous functions for which f(x) ≥
g(x) ≥ 0 for x ≥ a. Then

• If
∫∞
a
f(x) dx converges, then

∫∞
a
g(x) dx also converges.

• If
∫∞
a
g(x) dx diverges, then

∫∞
a
f(x) dx also diverges.

A similar statement holds for improper integrals that are discontinuous at endpoints. We
argued geometrically why this statement should hold.

Class 25: Monday, September 30. We worked on teams to solve several challenging
problems on material that will be covered on Midterm 1. The first involved calculating the
work to pump water over the top of a tank whose vertical cross-sections are trapezoids. Then
we worked on finding antiderivatives of the following functions:

x3 − 1

x− 1
,
x− x3√

x
, x3
√

1 + x2, sec3 x,
1√√
x+ 1

, x3ex, (3 secx− cosx)2, arctanx,

and 1
x2+4

via a trigonometric substitution.

Class 24: Friday, September 27. Our lecture today was motivated by the question
of what the integral

∫∞
1

1
x2
dx should mean. This is an example of an improper integral,

which, in this case, is due to the fact that one endpoint is not a finite number. We drew a
picture and decided it must “equal” the area under the graph of y = 1

x2
for x ≥ 1, if this is

finite. (Most students agreed that it might be finite!) We decided to define this integral as

lim
R→∞

∫ R

1

1

x2
dx = lim

R→∞

(
−1

x

) ∣∣∣∣R
1

= lim
R→∞

(
1− 1

R

)
= 1.

Likewise, given a constant a and a function f that is integrable on any interval [a, b] for
b > a, we define the following improper integral in the following way:∫ ∞

a

f(x) dx = lim
R→∞

∫ R

a

f(x) dx.

If this limit exists (and is a finite number), we say that the improper integral converges
and equals this finite number. Otherwise, we say that the improper integral diverges.
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We wrote out
∫∞
1

1
x
dx in terms of the appropriate limit, and found that the value ap-

proaches ∞. Hence this improper integral diverges to ∞. We noticed that y = 1
x
lies above

y = 1
x2

for x > 1, but they have a similar shape, so it is pretty subtle that one converges and
the other diverges!

We described how to define improper integrals with −∞ as an endpoint. For instance,∫ 0

−∞

dx

x2 + 1
= lim

R→−∞

∫ 0

R

dx

x2 + 1

which we found equals −π
2
.

We also defined how to define an improper integral with endpoints −∞ and∞: We must
“break up” the area at any point in the middle. For instance,∫ ∞

−∞

dx

x2 + 1
=

∫ a

−∞

dx

x2 + 1
+

∫ ∞
a

dx

x2 + 1

for any real number a; we chose a = 0. Both integrals must converge to say that the original
integral converges! We motivated this by the intuition that

∫∞
−∞ x dx “should” diverge.

Finally, prompted by our earlier examples, we turned to the question of for which con-
stants p, the integral

∫∞
a

1
xp
dx converges, and for which p it diverges. (Here, a is any positive

number.) We started by calculating the antiderivative of 1
xp

when p 6= 1, which is 1
1−px

1−p+C.

Class 23: Thursday, September 26. We noticed that some quadratic functions cannot
be factored, and explained how the partial fractions decomposition method can be extended
when there is a non-factorable quadratic term (or a power of such a term) in the denominator
of a rational function. We used this fact to describe the general method of partial fractions
decomposition: First factor the denominator, then decompose the integrand in terms of a
sum of rational functions, with several unknown constants. Solve for the constants, and then
find the antiderivative of each term.

We showed that if a > 0 is a constant, then∫
dx

x2 + a
=

1√
a

arctan

(
x√
a

)
.

This formula will be useful when finding antiderivatives of rational functions!
We then worked in teams on problems that involved using the partial fractions decom-

position method to find antiderivatives of the following functions:

x3 − x
x3 + x2 − x− 1

,
1

(x+ 2)(x2 + 4)
,

1

(x+ 2)(x2 − 4)
,
x3 + 1

x2 + 1
,

dx

2x2 − 3
,

1

x2(x2 + 25)2
.

Class 22: Wednesday, September 25. We started class by noticing that although an
antiderivative of a rational function (quotient of polynomials) such as

∫
4x−14

x2−7x+12
dx can be

found using a substitution, changing the integral slightly, say, to 2x−3
x2−7x+12

makes it so that
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this is not possible. We motivated the fact that our other methods of integration don’t seem
to be so helpful here, so we might want to try rewriting the integrand. Toward this, we
noticed that the denominator of the integrand factors as (x − 3)(x − 4), and claimed that
not only can a function of the form A

x−3 + B
x−4 , for real numbers A and B, be written with

a common denominator of (x− 3)(x− 4), but the “opposite” also holds: a fraction with this
denominator, and numerator a linear function, can always be written this way.

With this in mind, we set up the equation

2x− 3

(x− 3)(x− 4)
=

A

x− 3
+

B

x− 4
,

multiplied through by the denominator, and then plugged in values x = 3 and x = 4 to solve
for A and B. We found that A = −3 and B = 5, so that∫

4x− 14

x2 − 7x+ 12
dx = −

∫
3

x− 3
dx+

∫
5

x− 4
dx = −3 ln |x− 3|+ 5 ln |x− 4|+ C.

We pointed out that this general method always works to find the antideritative of a
rational function (fraction of polynomials), assuming 1) The denominator factors into distinct
linear terms, and 2) the degree (highest power of x appearing) in the numerator is less than
the degree of the denominator. This method is called partial fractions decomposition.

Using this idea, we found the antiderivative of x2+2x−44
(x+3)(x+5)(3x−2) , after writing it as A

x+3
+

B
x+5

+ C
3x−2 for some real numbers A,B, and C, and then integrating each piece. Notice that

the antiderivative of 1
3x−2 is not ln |3x− 2|!

We turned to the case that the degree of a rational function’s numerator is not less than
that of its denominator, writing

1

x2 − 1
=
x2 − 1

x2 − 1
+

1

x2 − 1
= 1 +

1

x2 − 1

and then integrating each term. The second term again requires partial fractions decompo-
sition!

We turned to finding the antiderivative of x3−x
x3+x2−x−1 , first using the method above to

reduce the problem to one where the degree of the numerator is smaller than 3, and then
turned to factoring the denominator. We immediately noticed that x = 1 and x = −1 are
roots of this cubic polynomial, so that (x − 1)(x + 1) is a factor of the denominator. Then
we used polynomial long division to see that the remaining factor is again x− 1, so that

x3 + x2 − x− 1 = (x− 1)(x+ 1)2.

Unfortunately, x3−x
x3+x2−x−1 = x3−x

(x−1)(x+1)2
cannot necessarily be written as A

x−1 + B
x+1

for real
numbers A and B, nor necessarily as A

x−1 + B
(x+1)2

. However, we claim that it can be written
as

A

x− 1
+

B

x+ 1
+

C

(x+ 1)2

for some real numbers A, B, and C. Tomorrow we will see the general pattern, and then
work on some problems related to this!
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Class 21: Tuesday, September 24. We worked in teams on problems involving trigono-
metric substitution, seeking the antiderivatives of:

1√
x2 + 9

,
1

x2
√

4x2 − 36
,

1

x2 + a
,

1

x2
√
x2 − 2

where a is a constant. Remember that we had to be very careful with restricting the domain
of the new variable!

Class 20: Monday, September 23. We started class by remembering our problem of
finding

√
1− x2 dx from last time, and the basic method using the substitution x = sin θ,

for −π
2
≤ θ ≤ π

2
.

We noticed that by the same type of argument, integrals involving a term of the form√
a2 − x2 can often be found by using the substitution x = a sin θ, for θ ∈

[
−π

2
, π
2

]
.

We then found
∫

dx√
4−x2 using x = 2 sin θ. We noticed that x =

√
3 sin θ should work for∫

x√
3−x2 dx, but that it might be easier to use the simple substitution u = 3− x2. However,

we likely need this trig substitution for, say,
∫ √

3−x2
x

dx.
We went through, in detail, the computation of the antiderivative∫

x2

(9− x2)3/2
dx =

∫
x2

(
√

9− x2)2
dx

which involved restricting the domain of θ to
(
−π

2
, π
2

)
, calculating all values to substitute,

rewriting the integrand using a trigonometric identity, finding the antiderivative of each
term, using a right triangle to solve for terms of antiderivative in terms of x, and making
sure that we can apply inverse trig functions on our domain.

Finally, we posed the problem of finding
∫

dx√
x2+25

, and after trying to substitute x =
5 cos θ and failing, we investigated whether x = 5 tan θ or x = 5 sec θ might work. In fact,
a trigonometric identity allows us to substitute the entire integrand for x = 5 tan θ, and we
proceeded in an analogous way (encountering different questions at each stage!) to find the
antiderivative in terms of θ. Notice that we needed to restrict the values of θ carefully, again!
Before class tomorrow, try writing the antiderivative in terms of x.

Class 19: Friday, September 20. We began class by giving a hint as to how to find∫
sec3 x dx or

∫
csc3 x dx.

Next, motivated by the fact that definite integrals of the form
∫ a
−a

√
a2 − x2 dx have

appeared in many of our problems on applications of calculus, but our only way to find these
are to realize the value in terms of the area of a circle, we posed the question of how to find
antiderivatives involving √

a2 − x2,
√
a2 + x2, or

√
x2 − a2.
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We started attacking this question by studying∫ √
1− x2 dx.

Motivated by the fact that sin2 θ+cos2 θ = 1, we investigated whether substituting x = sin θ
would make sense. We concluded that since the domain of the integrand y =

√
1− x2 is

[−1, 1], so that if we restrict θ to take on values in [−π/2, π/2], the substitution x = cos θ
makes sense.

We started the substitution, noticing that if x = sin θ, then dx = cos θ dθ, and∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ =

∫ √
cos2 θ cos θ dθ.

Now, since cos θ ≥ 0 for θ ∈ [−π/2, π/2], we have that
√

cos2 θ = cos θ for these values of θ,
so that this integral equals

∫
cos2 θ dθ. We remembered that we can find this antiderivative

using integration by parts twice, obtaining 1
2
θ + sin θ cos θ + C. Then we used labeled the

legs of a right triangle with angle θ so that sin θ = x = x/1; we chose the side opposite to
the angle to have length x, so that the adjacent leg has length

√
1− x2.

We noticed that for our values of θ, x = sin θ is exactly the same as saying θ = arcsin x.
Using this triangle to solve for the remaining values in our antiderivative, we concluded that∫ √

1− x2 dx =
1

2
θ + sin θ cos θ + C =

1

2
arcsinx+ x

√
1− x2 + C.

Class 18: Thursday, September 19. We began class by finding the antiderivatives of
tanx and secx by rewriting the integrand. We reminded ourselves how to derive trigonomet-
ric identities 1 + tan2 x = sec2 x and 1 + cot2 x = csc2 x from the identity sin2 x+ cos2 x = 1

Then in teams, we found
∫

tan2 x dx,
∫

tan2 x sec3 x dx, and
∫

cos498 x sin3 x dx. After
this, we worked on either the homework problem 6.5, #21 on work, or the problems assigned
as homework today.

Class 17: Wednesday, September 18. First, we fully completed two problems from
yesterday involving the calculus of parametic equations. In particular, we calculated the
slope of the tangent line to a circle at several points, and the area of a circle, using this
method.

Next, we approached the question of how to find an antiderivative of the form∫
sinm x, cosn x dx

where m and n are nonnegative integers, so that when n = 0 or m = 0, we are considering∫
sinm x dx or

∫
cosn x dx, respectively.
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We first noticed that
∫

cos3 x dx can be computing by writing it as∫
sin2 x sinx dx =

∫
(1− cos2 x) sinx dx

and using the substitution u = cosx. We saw that a similar method can be done to find∫
sin5x cos6 x dx

after writing sin5 x = (1− cos2 x)2 sinx, and using u = sinx.
We noticed that via this general method of gathering some “sin2 x” or “cos2 x” terms,

and then rewriting the integrand using the trigonometric identity sin2 x+ cos2 = 1, one can
always come to a lone “sinx” or “cosx” term when at least one of the powers m or n is
odd. In this case, we can use a substitution u = cosx or u = sinx, respectively, and then
the power rule, to find the antiderivative.

Next, we turned to the case when neither power is odd, first approaching
∫

sinm x dx or
∈ cosn x dx. The integrand

∫
sin2 x dx actually appeared in our parametric example earlier

today in computing the area of a circle; we had solved it by using the double angle formula
sin2 x = 1

2
(1− cos(2x)). We can do the same for

∫
cos2 x dx using cos2 x = 1

2
(1 + cos(2x)).

We then noticed that
∫

sin4 x dx can be found by first writing the integrand as (sin2 x)2,
using the double angle formula, expanding, and applying it again (try to re-do this yourself!).
Likewise, this method can be used iteratively to compute the integral of an even power of
sine or cosine.

Finally, we saw that if there is a positive even power of sine and cosine, we can use
the identity sin2 x + cos2 x = 1 to obtain a sum of powers of sine or cosine, with constant
coefficients, such as:∫

sin4 x cos2 x dx =

∫
sin4(1− sin2 x) dx =

∫
sin4 x−

∫
sin6 x dx.

and each of the resulting antiderivatives can be found via the previous method.
We finished by posing the question of how to find

∫
tanx dx “from scratch.” Think about

it!

Class 16: Tuesday, September 17. We started class by finding parameterizations for
the line going through a point (a, b) with slope m:

x = a+ rt, y = a+ st

where t is any real number, and m = s/r.
We then found, using the chain rule, an equation for the slope of the tangent line to

a parametric curve c(t) = (x(t), y(t)) when x(t) and y(t) are differentiable and x′(t) is
continuous and nonzero:

dy

dx
=

(
dy
dt

)(
dx
dt

) =
y′(t)

x′(t)
.
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We also used the substitution method to compute the area under the graph of a para-
metric curve c(t) = (x(t), y(t)) for a ≤ x ≤ b, if x(t0) = a and y(t1) = b:

A =

∫ t1

t0

y(t)x′(t) dt.

Then, in groups, we applied these concept. We first “eliminated the parameter” to write
parametric equations as functions y in terms of x, when possible, in 11.1: 8, 12, and 14.
Then we wrote a parameterization for a circle centered at (1,−5) with radius 4, tracing out
the curve both clockwise, and counterclockwise. After this, we aimed to compute the slope
of the tangent line to this circle at certain points, and then compute the area of a certain
circle parametrically. However, most groups did not finish these last parts, so we’ll talk
about them tomorrow.

Class 15: Monday, September 16. We finished our example from last time of calculat-
ing the work required to construct a concrete pillar. Next, we calculated the work required
to pump water from a spherical tank out of a spout above it. Each required us to break
the problem up into small pieces so that the distance of moving one piece is approximately
constant; then we could use an integral to calculate total work.

We then turned to the study of parametric equations. Writing a curve parametrically
allows us to model curves in which y is not necessarily a function of x, and to model movement
through time. A parametric equation is given by x = x(t), y = y(t) for t a real number,
possibly in a restricted domain. We sometimes use c(t) = (x(t), y(t)) to denote the parametric
curve given by the parametric equations.

We studied several ways of writing y = x2 parametrically, first as (t, t2) for all real
numbers t, and compared what changes when we restrict to t ∈ [−1, 4]. We then described
the curves (t3, t6), (t2, t4), and (sin t, sin2 t) for t any real number.

Finally, we modeled the unit circle parametrically in two ways, and then modified the
parameterization to trace out the circle of radius 2 centered at the origin.

Class 14: Friday, September 13. We started class today by solving the problem posed
yesterday, which involved identifying the “top” bound of integration in 6.4, #28.

Next, we recalled how to calculate the energy, work, required when a constant force is
applied to an object to move it, via the equation Work = Force × Distance. We discussed
the units of force and energy, and did some simple examples to illustrate them.

Next, we determined a formula for the work required to move an object along the x-axis
from x = a to x = b, when the force applied has magnitude F (x):∫ b

a

F (x) dx.

We did a few examples of applying Hooke’s law for springs. Next, we set up a problem
in computing the work required to construct a pillar with square base. We’ll finish this
problem next time!
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Class 13: Thursday, September 12. After a quiz on integration by parts and volumes
of revolution, we did problems involving the method of cylindrical shells. We did problems
inspired by 6.4: 14, 20, 28, and 32.

Class 12: Wednesday, September 11. Today we discussed another method of in-
tegration the method of cylindrical shells. Essentially, we divide a solid of revolution
into pieces that are approximated by the “shells” of cylinders. By “unrolling” the shell, we
determined that if the shell’s height is perpendicular to the x-axis, then the volume of each
shell is approximately

(2π · radius) (∆x)(height),

the product of length, width, and height. If the shell’s height is perpendicular to the y-axis,
“∆x” is replaced with “∆y” in the expression. The total volume of the solid of revolution is
then

2π

∫ b

a

(radius)(height) dx

for appropriate bounds of integration a ≤ x ≤ b, or an analogous formula if x is replaced
with y.

We did an example, computing a volume of revolution using the disc method, and then
the method of cylindrical shells. We noticed pros and cons of each method; sometimes it is
difficult to solve for a value necessary in one integrand, and sometimes one antiderivative
is much harder to find. In the two methods, the variable of integration changes. We also
noticed that in the disc and washer method, the radius of the disc is perpendicular to the
axis of rotation, and in the cylindrical shell method, the shell height is parallel to the axis
of rotation.

We started setting up the integral, using our new method, giving the volume of revolution
of the region between x = y(4− y) and x = (y − 2)2, after being revolved about the x-axis.
Try to finish this before class tomorrow!

Class 11: Tuesday, September 10. We worked in teams on problems involving the
computation of volumes of revolution. These were (slight modifications of) the following
problems from 6.3: 14, 19, 27, 30, 31, 58, 59. The last two are also assigned as homework!

Class 10: Monday, September 9. Today, we described solids of revolution about a
horizontal or vertical axis.

If f is a continuous function on [a, b], and f(x) ≥ 0 on this interval, consider the area
below the graph of f for a ≤ x ≤ b. If this region is rotated about the x-axis, consider the
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solid swept out. The cross section at any x-value will be a circle of some radius R = f(x),
so the area of the cross section is πR2 = π[f(x)]2, and the volume of the entire solid is∫ b

a

πR2 dx = π

∫ b

a

(f(x))2 dx.

This formula (or its derivation) is often called the dis method for computing volumes of
revolution.

We did an example, computing the volume of the solid obtained after rotating the region
under the graph of y = x3 for 0 ≤ x ≤ 1 about the x-axis. We then considered the
region between y = x3 and y = x2, between their points of intersection. To compute the
volume of the solid obtained when this region is revolved about the x-axis, we derived the
washer method for computing volumes of revolution, where a cross-section is the shape of
a “washer,” a disc of radius Router with a disc of radius Rinner removed:

π

∫ b

a

(R2
outer −R2

inner) dx.

We then used this formula to find the volume of revolution in our example.
Next, we found the volume of revolution of a solid obtained after revolution about a

horizontal line that is not the x-axis. Finally, we compute a volume of revolution of a solid
obtained by revolving about a vertical axis.

Class 9: Friday, September 6. Today’s class started with a brief lecture motivating
and defining the average value of a function f(x) on a closed interval of input values [a, b]:∫ b

a

f(x) dx.

In (new) teams, we completed the following:

A. Find the average value of the function y = x2 on the interval 0 ≤ x ≤ 10. Is it more
or less than 50? Can we describe why this should be the case based on the graph?

B. Looking at the graphs, should the average value of y = sinx on [0, π] be greater than,
less than, or equal to the average value of the semicircle

√
1− x2 on [−1, 1]?

Next, we worked through some problems, finding volumes of solid figures using our two-
step process from last time:

1. Find the volume of a cone with height 7 and radius 12.

2. Find the volume of the solid with base the unit circle x2 + y2 = 1, and whose vertical
cross sections are equilateral triangles.

3. Problem 6.2, #19 on frustrums
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Most groups did not get to the last problem, and it is assigned as homework from the
textbook.

Class 8: Thursday, September 5. We began class today by asking what quantities
integrals can represent, and then recalled our first motivation for an integral, total distance
traveled in terms of velocity.

We next turned to volumes. We motivated, and then demonstrated together that given
a solid body extending from y = a to y = b in which the cross-sectional area at height y
equals A(y) has volume

Total volume =

∫ b

a

A(y) dy.

We noticed that to apply this formula, we should always first (1) Find a formula for A(y),
and then (2) Compute the volume via the definite integral formula.

We found the volume of a certain pyramid using this formula, where we used a “similar
triangles” technique to compute the cross-sectional area.

Next, we found the volume of an arbitrary sphere of radius R using calculus, V = 4
3
πR3!!

Class 7: Wednesday, September 4. Today, we deduced a formula for the area between
the graphs of two functions, f(x) and g(x), on the interval a ≤ x ≤ b, assuming that f lies
above g on the interval (meaning that f(x) ≥ g(x) for all x in the interval):∫ b

a

(f(x)− g(x)) dx.

Throughout the class period, we applied this formula to compute areas, but came across
several interesting subtleties in which we had to be careful.

First, we computed a certain region between y = sin θ and y = cos θ: the region in the
interval [0, 2π] in which sin θ ≥ cos θ. We had to determine what θ-values bound this region,
and we found that they are θ = π/4 and 5π/4, so that the area equals∫ 5π/4

π/4

(sin θ − cos θ) dθ = 2
√

2

(this final answer was computed after finding an antiderivative, and applying the Fundamen-
tal Theorem of Calculus, Part I).

Next, we considered the region between the parabola f(x) = x2 + 5 and the line g(x) =
−4x+ 17 for −3 ≤ x ≤ 5. Here, sometime f lies above g, and sometimes g lies above x, and
we sketched graphs of the functions, and solved for intersection points, to determine where
each of these occur. We found that g lies above f for −3 ≤ x ≤ 2 and vice versa for 2 ≤ 5,
so the area is: ∫ 2

−3
(−4x+ 17)− (x2 + 5) dx+

∫ 5

2

(x2 + 5)− (−4x+ 17) dx.
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After this, we considered a region bounded between three curves: y = 1
2x
, y = x, and

y = x2. After sketching the graph and finding all pairwise intersection points, we determined
that there are two different regions bounded between all curves, and described each in terms
of integrals (sometimes differences of them!).

Finally, if x = g(y), then we noticed that the signed area between g and the y-axis can
be computed as

∫ d
c
g(y) dy, assuming that the region is bounded between y = c and y = d.

Class 6: Tuesday, September 3. We started class with a quiz on substitution, and then
we worked on groups finding antiderivatives, by applying integration by parts (and possible
substitution as well). In the middle of class, we introduced the integration by parts formula
for definite integrals: ∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du

and we worked on some problems that involved applying this formula. (If you did not finish
these, make sure to do them for homework!)

Check out the Quiz Correction Guidelines posted on the course website!

Class 5: Friday, August 30. We started class by finding two antiderivatives using
the substitution method, that provided extra (new) challenges:

∫
r
√

5−
√

4− r2 dr and∫
sin4 θ
sec3 θ

dθ. The first required two substitutions, one of which involving solving for the original
variable in terms of the substituted one, and the second required rewriting the integrand in
terms of sin θ and cos θ, and then rewriting it again using the identity sin2 θ + cos2 θ = 1.

After this, we derived by hand the method of integration by parts for finding an-
tiderivatives, which was motivated by our desire to find the antiderivate of a product of two
functions: ∫

f(x)g′(x) dx = f(x)g(x)−
∫
f ′(x)g(x) dx.

If u = f(x) and v = g(x), this translates to∫
u dv = uv −

∫
v du.

In the same vein that the substitution method for antiderivatives is a “reverse” to the
chain rule for derivatives, integration by parts reverses, in a slightly more subtle sense, the
product rule for derivatives.

We saw from the examples
∫
x cosx dx and

∫
x lnx dx that the choice of which function

is u, and which becomes part of dv matters: We noticed that we should keep in mind that
the choice for dv must be a function for which we can compute the antiderivative, and we
need that

∫
v du is somehow accessible as well.

Finally, we found
∫
x2ex dx via two iterative applications of integration by parts, and

then
∫
ex sinx dx by applying the method twice and then solving for the antiderivative,

which ended up appearing twice in our expression.
Next time we will find

∫
lnx dx via integration by parts!
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Class 4: Thursday, August 29. Today, we first finished working on some substitution
problems from last time. From here, we introduced and motivated the change of variable
formula for definite integrals:∫ b

a

f(u(x))u′(x) dx =

∫ u(b)

u(a)

f(u) du.

On the other hand, if we can find an antiderivative using the substitution method, we can, of
course, use that answer to compute the definite integral with the same integrand using the
Fundamental Theorem of Calculus, Part II. We did a few examples, including one in terms
of areas, and then worked on teams on some more challenging problems.

Be ready for a quiz on the substitution method either tomorrow, or early next week!

Class 3: Wednesday, August 28. We began class by recalling how to define and
compute a definite integral using the limit definition, and why this measures the (signed)
area between the graph and the x-axis.

The Fundamental Theorem of Calculus, Part I makes this calculation much easier, at
least if we can find an antiderivative! (Our example of ex2 is one we’ll come back to, in
which we cannot currently find one!) Our goal for the immediate future in this course is to
develop tools to use that help us find antiderivatives.

We presented the substitution method for finding antiderivatives: If F is an antideriva-
tive for f , then ∫

f(u(x))u′(x) dx = F (u(x)) + C.

We showed why this holds, and argued that this could also be called the “reverse chain rule.”
We also presented the notion of differentials, and gave the change of variables formula:∫

f(u(x))u′(x) dx = f(u) du.

Next, we worked in teams on several (increasingly difficult) antiderivatives that require
application of the substitution method.

Class 2: Tuesday, August 27. Today we began class by working in teams to find the
derivatives of f(x) = x3 (first, its value at x = 2) and g(x) = |x| using the definition of the
derivative.

After this, we recalled the definition of an antiderivative and an indefinite integral,
and compared this to the notion of a (definite) integral that measures the (signed) area
between the graph of a function and the x-axis. We used the geometric interpretation of
definite integrals to compute them without using antiderivatives, and we ended by recalling
the deep connection between definite integrals and antiderivatives via the Fundamental
Theorem of Calculus, Part I.

Tomorrow we will work in teams in learning, and applying, our first rule for computing
antiderivatives!
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Class 1: Monday, August 26. We began the course by first going over the syllabus
and the expectations for the semester. Next, we gave a lightning-fast summary of Calculus
I material, emphasizing what is most important to know, and take away, from this course.

In particular, we discussed how the concept of a limit differentiates calculus from all
math that comes “before” calculus, and tied the limit definition of the derivative to the
geometric notion of (instantaneous) slope. We gave several examples, and noticed that the
“derivative rules” do not apply to all functions for which we have equations.

Next time, we will tie Calculus I material to integrals, and start with techniques of
integration. Make sure to send my your first assignment!
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