
Chapter 2
Induction

This chapter describes the method of proof by induction, in several versions. The
last section presents the Binomial Theorem.

A. Induction

Induction is the basic method of proof for facts involving natural numbers. It allows
us to obtain, in a finite number of steps, proofs of statements about all the numbers
in the infinite set N.

Induction comes in various formulations. Here is the best-known version.

Theorem 1 (Induction). Fix an integer n0 and let P(n) be a statement which makes
sense for every integer n≥ n0. Then P(n) is true for all n≥ n0, if the following two
statements are true:

(a) P(n0) is true; and
(b) for all k ≥ n0, if P(k) is true then P(k + 1) is true.

When using induction to prove a theorem, proving (a) is called the base case,
and proving (b) is called the induction step.

You have almost certainly seen this principle used before, perhaps in calculus, in
evaluating sums arising in connection with the definite integral.

Here is a simple example.

Example 1. For all n≥ 1,

1 + 3 + 5 + . . .+(2n−1) = n2.

Proof. Let P(n) be the statement

1 + 3 + 5 + . . .+(2n−1) = n2,
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10 2 Induction

or in words, “the sum of the first n odd numbers is n2”. Thus P(1) is the statement

1 = 12,

P(2) is the statement
1 + 3 = 22,

P(5) is the statement
1 + 3 + 5 + 7 +9 = 52,

and so on. All of these are clearly true, but just looking at P(n) for many specific
values of n does not suffice to prove P(n) for every natural number n≥ 1. So we let
n0 = 1 and use induction to prove P(n) for all n≥ 1.

The base case P(1) is true, since 1 = 12.
For the induction step, let k be some unspecified number ≥1, and assume that

P(k) is true, that is,
1 + 3 + . . .+(2k−1) = k2.

We want to show that then P(k + 1) is true, that is,

1 + 3 + . . .+(2k−1)+ (2k + 1)= (k + 1)2.

To do so, we can add (2k + 1) to both sides of the equation P(k) to get

1 + 3 + . . .+(2k−1)+ (2k + 1)= k2 +(2k + 1). (2.1)

The left side of (2.1) is the left side of the statement P(k+1), and, since k2 +2k+1 =
(k + 1)2, the right side of (2.1) is equal to (k + 1)2, the right side of P(k + 1). Thus
assuming P(k) is true, it follows that P(k + 1) is true.

By induction, P(n) is true for all n≥ 1. ��
The rationale behind induction is that if the base case (a) and the induction step

(b) are true, then for any n > n0, one can prove, in n−n0 logical steps, that P(n) is
true. For example, if P(n) is the equation of Example 1, above and we wish to prove
that P(5) is true, we can argue logically as follows:

P(1) is true, by the base case.
Since P(1) is true, P(2) is true, by the induction step with k = 1;
Since P(2) is true, P(3) is true, by the induction step with k = 2;
Since P(3) is true, P(4) is true, by the induction step with k = 3;
Since P(4) is true, P(5) is true, by the induction step with k = 4.
This same reasoning can be used to show that P(n) is true for any given num-

ber n. We simply start with the base case, which says that P(n0) is true, and then
successively infer that P(n0 + 1),P(n0 + 2), . . . ,P(n) is true by n− n0 uses of the
induction step. The principle of induction simply asserts that given the validity of
the base case and of the induction step for all n ≥ n0, then for any n > n0, P(n) can
be shown true, and therefore is true.

Here are some more examples.

Example 2. For all n≥ 1, 2n ≥ 1 + n.
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Proof. Here n0 = 1.
The statement

P(n) : 2n ≥ 1 + n

is clearly true when n = 1, so the base case is true.
For the induction step, let k be a number≥1 and assume

P(k) : 2k ≥ 1 + k

is true. Then multiplying both sides by 2 gives

2k ·2≥ (1 + k) ·2,

so
2k+1 = 2k ·2≥ (1 + k) ·2 = 2 + 2k > (1 + 1)+ k = 1 +(k + 1).

Thus the statement
P(k + 1) : 2k+1 ≥ 1 +(k + 1)

is true. We’ve shown that for every k ≥ 1, the induction step is true. Hence the
inequality P(n) is true for all n≥ 1 by induction. ��
Example 3. The number 8 divides 32n− 1 for all n ≥ 0. That is, for every n ≥ 0,
32n−1 = 8m for some natural number m.

Proof. The statement P(n): 8 divides 32n−1, is true for n = 0 since 8 divides 30−
1 = 0. The induction step involves a little “trick” of subtracting and adding the same
quantity. Suppose 8 divides 32k−1. We examine 32(k+1)−1:

32(k+1)−1 = 32k ·32−1

= 32k ·32−32 + 32−1

= 32(32k−1)+ (32−1).

Since 8 divides 32k−1 and 8 divides 32−1, therefore 8 divides 32(32k−1) +
(32−1) = 32(k+1)−1. Thus the statement P(n) is true for all n≥ 0. ��
Example 4. The number 2n3−3n2 + n + 31≥ 0 for all n≥−2.

Proof. Let us set f (n) = 2n3− 3n2 + n + 31. Then for each n ≥ −2, the statement
P(n) is the inequality

P(n) : f (n)≥ 0.

In particular, for the base case, P(−2) is the inequality f (−2) ≥ 0, which is true
because f (−2) = 1. For the induction step, suppose that for some k≥−2, the state-
ment P(k) is true, that is, f (k) > 0. Then expanding f (k + 1) and collecting terms,
we find
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f (k + 1) = 2(k + 1)3−3(k + 1)2 +(k + 1)+ 31

= 2(k3 + 3k2 + 3k + 1)−3(k2 + 2k + 1)+ (k + 1)+31

= 2k3 + 6k2 + 6k + 2−3k2−6k−3 + k + 1 +31

= 2k3 + 3k2 + k + 31

= f (k)+ 6k2 ≥ f (k) ≥ 0.

So P(k + 1) is true. Thus P(n) is true for all n ≥ −2, that is, f (n) ≥ 0 for all
n≥−2. ��
Example 5. In calculus, after the rules for the derivative of a constant and of x, and
the product rule are presented, the rule for the derivative of xn can be proved by
induction:

dxn

dx
= nxn−1.

Proof. Let P(n) be the statement

dxn

dx
= nxn−1.

Then P(0) is the statement that the derivative of the constant function 1 is 0, and
P(1) is the statement that the derivative of x is 1. To prove P(n) by induction, sup-
pose that for some k ≥ 0,

P(k) :
dxk

dx
= kxk−1

is true. Then consider dxk+1

dx . By the product rule, we have

dxk+1

dx
=

d(x · xk)
dx

=
dx
dx
· xk + x · dxk

dx
= xk + x · kxk−1

since we know P(1) is true and we have assumed P(k) is true. Collecting terms, we
obtain

dxk+1

dx
= (k + 1)xk

and so P(k + 1) is true. Thus by induction,

P(n) :
dxn

dx
= nxn−1

is true for all n≥ 0. ��
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Exercises. In the exercises, n is always an integer.

1. Prove that 1 + 2 + 3 + . . .+ n = n(n + 1)/2 for all n≥ 1.

2. Prove that 13 + 23 + . . .+ n3 = [n(n + 1)/2]2 for all n≥ 1.

3. Prove that
1 + 2 + 22 + . . .+ 2n−1 = 2n−1

for every n > 1.

4. Prove that for all n≥ 1,

14 + 24 + . . .+ n4 =
n(n + 1)(2n + 1)(3n2+ 3n−1)

30

5. Prove that for any real number x and for all numbers n > 1,

xn−1 = (x−1)(xn−1 + xn−2 + . . .+ xn−r + . . .+ x + 1).

6. Using the last exercise, prove that for all n > 1,

lim
r→1

rn−1
r−1

= n.

7. (Askey) Show that dxn

dx = nxn−1 as follows: by the definition of the derivative,

dxn

dx
= lim

y→x

yn− xn

y− x
.

Set y = rx and compute the limit using the last exercise.

8. Prove that n! > 2n for all n≥ 4.

9. Prove that 22n > n4 for all n≥ 4.



14 2 Induction

10. Let

tn =
n(n + 1)

2
= 1 + 2 + . . .+ n

be the n-th triangular number. Define t0 = 0.
(i) Show that the odd square number (2n + 1)2 = 8tn + 1 for all n≥ 1.
(ii) Prove that

1
t1

+
1
t2

+ . . .+
1
tn

= 2− 2
n + 1

.

(Hint: observe that 1
n(n+1) = 1

n − 1
n+1 . )

(iii) Prove that for all n≥ 1,

1
1

+
1
9

+
1

25
+ . . .+

1
(2n + 1)2 ≤

5
4
− 1

4(n + 1)

in two ways: directly by induction, and by using (i) and (ii).

11. Let a be a natural number >1. Prove that for all integers r0,r1, . . . ,rn−1 with
0≤ r j < a,

r0 + r1a + r2a2 + . . .+ rn−1an−1 < an.

When n = 10 this says that 10n is larger than any n-digit number.

12. Let b be a number≥2. Prove that for all n≥ 1,

(bn−1)(bn−b)(bn−b2) · . . . · (bn−bn−2)≥ bn(n−1)−bn(n−1)−1.

13. Prove that for every n≥ 1, 24 divides 16n−16.

14. Prove that for every n≥ 1, 5 divides 8n−3n.

15. Prove that for every n≥ 1, 5 divides 34n−1.

16. Prove that for every odd number n≥ 1, 9 divides 4n + 5n.

17. Prove that for every n≥ 0, 3 divides 22n+1 + 1.

18. Using the addition formulas

cos(a + b) = cos(a)cos(b)− sin(a)sin(b)

and
sin(a + b) = sin(a)cos(b)+ cos(a)sin(b),

prove that for each n > 1 there are polynomials fn(x) of degree n and gn(x) of degree
n−1 so that

cos(nx) = fn(cos(x))

and
sin(nx) = gn(cos(x))sin(x).
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19. For any real number a, define a0 = 1, and for every number k≥ 0, define ak+1 =
ak ·a. Using induction, prove that for all natural numbers m and n, am+n = am ·an.

20. Consider the puzzle called the Tower of Hanoi (attributed to the French math-
ematician Edouard Lucas, 1883). The puzzle consists of n disks of decreasing di-
ameters placed on a pole. There are two other poles. The problem is to move the
entire stack of disks to another pole by moving one disk at a time to any other pole,
except that no disk may be placed on top of a smaller disk. Find a formula for the
least number of moves needed to move a stack of n disks from one pole to another,
and prove the formula by induction.

21. (Neal Hill). Suppose in the Tower of Hanoi, the three poles are in a row, and a
disc can only be moved from a pole to an adjacent pole. All other rules apply. How
many moves does it take to move a stack of n discs from the leftmost pole to the
rightmost pole?

22. Show that for every positive integer n, one of the numbers n,n+1,n+2, . . .,2n
is the square of an integer.

23. What is wrong with the proof of the following (true) theorem?

Theorem 2. All new 1922 Ford Model T cars had the same exterior color.

Proof. The case n = 1 is obvious.
Suppose that in any set of n new Model T’s, all had the same exterior color.

Consider a set of n + 1 new Model T’s, lined up from left to right.
We may assume by induction that in the set L of the n Model T’s to the left all

had the same exterior color, and similarly that in the set R of the n Model T’s to
the right all had the same exterior color. But then evidently all the n + 1 Model T’s
had the same exterior color, for the leftmost and rightmost Model T’s had the same
exterior color as all the Model T’s in between.

By induction, for every number n, in every set of n new Model T’s all had the
same exterior color. Since the set of all new 1922 Model T’s was one such set, the
theorem is proved. ��

(Henry Ford was reputed to have said of the Model T, “You can paint it any color,
so long as it’s black.”)

24. Show that for n≥ 1,

1 + 7 + 13 + . . .(6n−5) = 3n2−2n.

B. Complete Induction

Complete Induction is a reformulation of induction that is often more convenient
to use.
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Theorem 3 (Complete Induction). Let n0 be a fixed integer and let P(n) be a state-
ment which makes sense for every integer n ≥ n0. Then P(n) is true for all integers
n > n0, if the following two statements are true:

(a’) (base case) P(n0) is true, and
(b’) (induction step) For all m > n0:
if P(k) is true for all k with n0 ≤ k < m, then P(m) is true.

Complete induction appears more complicated than ordinary induction, but in
fact it is easier to use. Compare the induction step (b’) with the induction step (b)
for ordinary induction:

(b) For all m > n0,
if P(m−1) is true, then P(m) is true.

In attempting to prove the induction step in a proof by induction, complete induc-
tion allows us to assume more than we can with ordinary induction. With complete
induction, in order to prove P(m), you may assume that P(k) is true for every k,
n0 ≤ k < m. In ordinary induction you are allowed only to assume that P(m−1) is
true. So complete induction is more flexible than ordinary induction.

For certain kinds of results involving multiplication, ordinary induction is awk-
ward to apply, while complete induction is quite natural. The next example is such
a result.

Recall that a natural number n is prime if n ≥ 2 and does not factor into the
product of two natural numbers each smaller than n. Also, a number q divides a
number n, or n is divisible by q, if n = qr for some natural number r. Thus 3 divides
12, but 3 does not divide 14.

Proposition 4. Every natural number n≥ 2 is divisible by a prime number.

Proof. Let P(n) be the statement, “n is divisible by a prime number.” Then the base
case P(2) is true, because 2 is prime and 2 divides itself.

We’ll use complete induction for the induction step. Thus we assume that P(k)
is true for all k where 2 ≤ k < m: that is, we assume that every natural number ≥2
and <m is divisible by a prime number. Now consider m. If m is prime, then m is
divisible by a prime number, namely itself, and P(m) is true. If m is not prime, then
m factors as m = ab, where 2 ≤ a < m and also 2 ≤ b < m. Since 2 ≤ a < m, by
assumption P(a) is true, that is, a is divisible by a prime. Since a is divisible by a
prime, and a divides m, m is divisible by the same prime. So P(m) is true.

Thus P(n) is true for all n≥ 2 by complete induction. ��
Notice that had we tried to use ordinary induction to prove P(m): “m is divisible

by a prime” for all m ≥ 2, then in the induction step we would have been permitted
only to assume that m− 1 is divisible by a prime, in order to try to prove that m is
divisible by a prime. But knowing about factors of m− 1 is of little direct help in
finding factors of m, since no factor of m− 1 other than 1 can possibly be a factor
of m. (Why?) Thus if we wanted to prove Proposition 4 by ordinary induction, we
would need to change the statement P(n). See the proof of Theorem 6, below.



2 Induction 17

If we want to prove something using induction, complete induction will work
just as well. For suppose we can prove

For all k ≥ n0, if P(k) is true, then P(k + 1) is true.

Then we can prove

For all k ≥ n0, if P(m) is true for all m with n0 ≤ m < k, then P(k + 1) is true.
For if we can prove P(k + 1) assuming only P(k), then we can prove P(k + 1)

assuming P(m) for all n0 ≤ m ≤ k.

Hence:

Theorem 5. If a statement P(n) can be proved for all n≥ n0 by ordinary induction,
it can be proved by complete induction.

It turns out, however, that the two forms of induction are logically equivalent. We
prove

Theorem 6. If a statement P(n) can be proved for all n≥ n0 by complete induction,
it can be proved by ordinary induction.

Proof. Suppose we know that:
(a’) P(n0) is true, and
(b’) if P(k) is true for all k, n0 ≤ k < m, then P(m) is true.
Then P(n) is true for all n ≥ n0 by complete induction. We show how to prove

P(n) for all n by ordinary induction. To do so, we consider a new statement
Q(n): P(m) is true for all m, n0 ≤ m≤ n.
We prove Q(n) is true for all n ≥ n0 by ordinary induction. Note that if Q(n) is

true, then P(n) is true.
For the base case, we need to show:
(a) Q(n0) is true.
But because Q(n0) is the statement “P(m) is true for all m, n0 ≤ m ≤ n0,” we

have that Q(n0) is true because by (a), P(n0) is true.
For the induction step, we need to show:
(b) If Q(m−1) is true then Q(m) is true.
To see this, observe that if Q(m− 1) is true, then P(k) is true for all k with

n0 ≤ k ≤ m− 1. So since we assumed (b’) holds for all n ≥ n0, therefore P(m) is
true. But then P(k) is true for all k with n0 ≤ k ≤ m, and so Q(m) is true.

Thus by ordinary induction, Q(n) is true for all n ≥ n0. But if Q(n) is true, then
P(n) is true. So P(n) is true for all n≥ n0. ��

This theorem implies that whenever we want to prove a statement about natural
numbers, we can use whichever version of induction is most convenient. Henceforth,
when we refer to “induction”, we mean either version.
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Exercises.

25. Prove “For all n ≥ 2, every number m with 1 < m ≤ n is divisible by a prime
number” by ordinary induction.

26. Prove that any natural number n≥ 2 either is prime or factors into a product of
primes.

27. Prove that the sum of the interior angles of an n-sided convex polygon is 180×
(n−2).

28. Let f : N → N be a function with the properties that f (1) = 1 and for all
numbers n > 1, f (n) < n. Prove that for every n there is some k so that the func-
tion f (k), obtained by composing f with itself k− 1 times, maps n to 1. (Thus
f (1)(n) = f (n), f (2)(n) = f ( f (n)), f (3)(n) = f ( f ( f (n))), etc.)

29. Russian peasant arithmetic. Here is a way of multiplying which has been at-
tributed to Russian peasants who could only add, and multiply and divide by 2.
In fact this method of multiplying was also used by the ancient Egyptians (2000
B.C.) (see [Gillings (1972)]) and is of interest also to computer programmers (since
computers are especially efficient in multiplying and dividing by 2).

To multiply two numbers a and b set up four columns, labeled “left”, “right”,
“sum” and “summand”. In the top row place a in the left column, b in the right
column, and 0 in the sum column. If b is odd, place a in the summand column. If b
is even, place 0 in the summand column.

Then fill in successive rows of the array. If a, b, s and d are the entries in a given
row, then fill in the next row as follows:

If b is even, set the entries in the left, right and sum columns of the next row to
be 2a, b/2 and s+ d.

If b is odd, set the entries in the left, right and sum columns of the next row to be
2a, (b−1)/2 and s+ d.

Then set the entry in the summand column to be 0 if the entry in the right column
(either b/2 or (b− 1)/2) in the same row is even; set the entry in the summand
column to be the entry in the left column (2a) of the new row if the entry in the right
column in the new row (either b/2 or (b−1)/2) is odd.

left right sum summand
...

a b s d
2a b/2 or (b−1)/2 s+ d 2a or 0

...

Continue until you reach the row in which the entry in the right column is 0. Then
the entry in the sum column is a ·b.

Here is an example, showing that 116 ·311 = 36076:
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left right sum summand
116 311 0 116
232 155 116 232
464 77 348 464
928 38 812 0
1856 19 812 1856
3712 9 2668 3712
7424 4 6380 0

14848 2 6380 0
29696 1 6380 29696
59392 0 36076

Given two numbers a and b, prove by induction that for each row,

(the left entry) · (the right entry)+ (the sum entry) = a ·b,

and therefore a ·b is equal to the last entry in the sum column.

30. The Fibonacci sequence is defined by a1 = 1,a2 = 1 and for all n ≥ 2, an+1 =
an + an−1. Thus the sequence begins

1,1,2,3,5,8,13,21,34,55, . . ..

Prove that for all n≥ 1, an < ( 5
3 )n.

31. A composition of a natural number n is a description of n as an ordered sum of
natural numbers. For example, the compositions of 3 are:

3,2 + 1,1 + 2,1 + 1+1

and the compositions of 4 are

4,3 + 1,2 + 2,2 +1+1,1+3,1+2+1,1+1+2,1+1+1+1.

Let c(n) be the number of compositions of n. Guess a formula for c(n) for all n≥ 1
and prove your formula by induction.

C. Well-Ordering

The formulations of induction in the two previous sections were developed in the
seventeenth century by Pascal and others. However, some results about natural
numbers were obtained many centuries earlier, by the ancient Greek mathemati-
cians whose work was collected in Euclid’s Elements (300 B.C.) For example,
Proposition 4, above, is found in Euclid, Book IX, Proposition 31. Here is how
Euclid proved:

Theorem 7. Every composite number is divisible by some prime number.
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Proof. Suppose A is a composite number. Then A is divisible by some number B.
If B is prime, we’re done, so assume B is composite. Then B is divisible by some
numberC, so C is a divisor of A. If C is prime, we’re done, so assume C is composite.
Then C is divisible by some number.

“Thus, if the investigation be continued in this way, some prime number will be
found which will measure [divide] the number before it, which will also measure A.
For if it is not found, an infinite series of numbers will measure the number A, each
of which is less than the other: which is impossible in numbers.” ��

Thus Euclid proves the result by what might be called “infinite descent”: there is
no infinite descending chain of natural numbers.

The principle of infinite descent can be expressed more affirmatively as the

Theorem 8 (Well-Ordering Principle). Any nonempty set of natural numbers has
a least element.

We can rephrase Euclid’s proof in terms of the well-ordering principle. For any
number A > 2, let S be the set of numbers≥2 which divide A. Since A is a positive
divisor of itself, S is nonempty. Euclid’s argument using infinite descent is that if
we select a strictly decreasing sequence of proper divisors of A, and none is prime,
then we get an infinite descending chain of elements of S , impossible. Using well-
ordering, we can say: S has a least element C, that is, A has a least divisor C ≥ 2.
If C is not prime, then C has a smaller divisor D ≥ 2 which is then a divisor of A,
contradicting the assumption that C is least. So C must be prime.

Well-ordering and infinite descent are different forms of induction. We can in
fact prove the well-ordering principle using induction. To do so, we prove that if
there is a set of natural numbers with no least element, then it must be empty. (This
approach uses the standard logical strategy for proving statements of the form “if
A then B”-we prove that if B is false, then A must be false. The reason that the
strategy works is that the only situation under which the statement “if A then B” is
false occurs when A is true and B is false. If we assume B is false and are able to
show thereby that A is false, then the situation “A true and B false” cannot occur
and so “if A then B” is true.)

Proof of the Well-Ordering Principle. Let S be a set of natural numbers with no
least element. Let P(n) be the statement: “Every number in S is >n.” Observe that
if P(m) is true, then m is not in S . So by showing that P(n) is true for all n, we will
show that S is empty, which will prove the well-ordering principle.

Evidently P(1) is true, for if not, 1 is in S , and since all natural numbers are≥1,
therefore S would have a least element.

Suppose P(k) is true for some k > 1. If P(k + 1) is false, then S contains some
number≤ k + 1. But P(k) is true. So every number in S is > k. But then k + 1, the
only number≤k+1 which is > k, would be in S and would be the least element of
S , impossible. Thus if P(k) is true, then P(k +1) is true. By induction, P(n) is true
for all n≥ 1, and S is empty. That finishes the proof. ��
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One important use of the well-ordering principle is that it permits us to define
a number by the property that the number is the smallest number in a certain non-
empty set.

For example, consider the set S of numbers that are multiples of both 24 and 90.
That set of common multiples of 24 and 90 is non-empty, for it includes 24 · 90 =
2160. Thus by well-ordering, the set S has a smallest number, the least common
multiple of 24 and 90. Some computation verifies that the least common multiple is
360. But with no computation, well-ordering tells us immediately that

Proposition 9. Any two numbers a and b have a least common multiple, that is, a
number m which is a common multiple of a and b and which is≤ any other common
multiple of a and b.

Proof. Since the set S of common multiples of a and b contains a · b, S is non-
empty. So by well-ordering, S has a smallest element, which is the least common
multiple of a and b. ��

Exercises.

32. Show that there is no rational number b/a whose square is 2, as follows: if
b2 = 2a2, then b is even, so b = 2c, so, substituting and canceling 2, 2c2 = a2. Use
that argument and well-ordering to show that there can be no natural number a > 0
with b2 = 2a2 for some natural number b.

33. Prove that the well-ordering principle implies induction, as follows: suppose
P(n) is a statement which make sense for every n ≥ n0. Suppose (a) P(n0) is true,
and (b) for any n ≥ n0, if P(n) is true then P(n + 1) is true. Let S be the set of
n≥ n0 for which P(n) is false. Using well-ordering, show that S must be empty.

34. Show that the well-ordering principle is equivalent to “there is no infinite de-
scending chain of natural numbers”.

35. Fix N, some integer, and suppose S is a nonempty set of integers such that
every a in S is <N. Show that S has a maximal element. (Hint: Let T =
{n in N|n≥ a for all a in S }.)

D. The Binomial Theorem

The Binomial Theorem describes the coefficients when the expression (x + y)n is
multiplied out. Recall that n! (“n factorial”) is defined by n! = 1 · 2 · 3 · . . . · n for
n > 0. We set 0! = 1.

Theorem 10 (The Binomial Theorem). For every integer n≥ 1,

(x + y)n =
(

n
0

)
xn + . . .+

(
n
r

)
xn−ryr + . . .+

(
n
n

)
yn
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where (
n
r

)
=

n!
r!(n− r)!

for 0≤ r ≤ n.

Examples:

(x + y)2 = x2 + 2xy + y2; (x + y)3 = x3 + 3x2y + 3xy2 + y3.

The proof is by induction on n. In order to carry through the argument passing
from n−1 to n (the induction step) we first set up Pascal’s triangle,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...

.

We number the elements c(n,r) of Pascal’s triangle by the row n and the position
r of the element within the row, both indices starting from 0. Thus Pascal’s triangle
is labeled

c(0,0)
c(1,0) c(1,1)

c(2,0) c(2,1) c(2,2)
c(3,0) c(3,1) c(3,2) c(3,3)

...

,

where
c(0,0) = c(n,0) = c(n,n) = 1

for all n, and for 1≤ r ≤ n−1,

c(n,r) = c(n−1,r−1)+ c(n−1,r).

That is, c(n,r) is the sum of the terms to the upper left and to the upper right:

c(n−1,r−1) + c(n−1,r)
= c(n,r)

The entries c(n,r) have a combinatorial interpretation.

Proposition 11. Let S be a set with n elements. Then c(n,r) is the number of
r-element subsets of S.

Proof. We do this by induction on n, the case n = 1 being obvious.
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Let S be a set with n elements. The statement is true when r = 0 or n, since there
is only one subset of S with n elements, namely S, and only one with no elements.

Assume, then, that n > 1 and 1≤ r≤ n−1. Let y be an fixed element of S. Let S0

be the set of all the elements of S except y. S0 is then a set with n−1 elements. Divide
the collection of all r-element subsets of S into two piles, one consisting of those
subsets containing y, the other consisting of those subsets not containing y. The first
pile consists of exactly those subsets of S obtained by taking an (r− 1)-element
subset of S0 and adjoining y. By induction applied to S0, there are c(n− 1,r− 1)
of these. The second pile consists exactly of the r-element subsets of S0, of which
there are c(n−1,r), again by induction. Thus the number of r-element subsets of S
is c(n−1,r−1)+ c(n−1,r)= c(n,r), which is what we wished to show. ��

The entries of Pascal’s triangle can be computed by the following:

Lemma 12.

c(n,r) =
(

n
r

)
=

n!
r!(n− r!)

Proof. Induction on n. The case n = 0 is obvious:

0!
0!0!

= 1 = c(0,0),

Given n > 0, assume that for all r with 0≤ r ≤ n−1,

c(n−1,r) =
(n−1)!

r!(n−1− r)!
.

Now

c(n,0) = 1 =
n!

0!(n−0)!
, c(n,n) = 1 =

n!
n!(n−n)!

so the lemma is true for c(n,r) when r = 0 or n. For 1≤ r ≤ n−1,

c(n,r) = c(n−1,r−1)+ c(n−1,r)

=
(n−1)!

(r−1)!(n− r)!
+

(n−1)!
(r)!(n−1− r)!

=
(n−1)!

(r−1)!(n−1− r)!

[
1

n− r
+

1
r

]

=
(n−1)!

(r−1)!(n−1− r)!
· n
(n− r)r

=
n!

r!(n− r)!

as was to be shown. The lemma is therefore proved by induction. ��
Corollary 13.

(n−1
r−1

)
+
(n−1

r

)
=
(n

r

)
.
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We therefore know that for each n,
(n

0

)
=
(n

n

)
= 1, and

(n
r

)
=
(n−1

r

)
+
(n−1

r−1

)
for

1 ≤ r ≤ n−1. Using these facts we can prove the Binomial Theorem by induction
on n.

Proof of the Binomial Theorem. For n = 1, (x + y) =
(1

0

)
x +

(1
1

)
y so the binomial

theorem is true when n = 1. Assume n > 1 and the theorem is true for n−1, that is,

(x + y)n−1 =
(

n−1
0

)
xn−1 +

(
n−1

1

)
xn−2y2 + . . .

+
(

n−1
r

)
xn−1−ryr + . . .+

(
n−1
n−1

)
yn−1.

We compute (x + y)n as follows:

(x + y)n = (x + y) · (x + y)n−1 = x(x + y)n−1 + y(x + y)n−1.

Multiplying the expansion of (x + y)n−1, above, by x and by y, and adding, we get

(x + y)n =
(

n−1
0

)
xn +

(
n−1

1

)
xn−1y + . . .+

(
n−1
n−1

)
xyn−1

+
(

n−1
0

)
xn−1y + . . .+

(
n−1
n−2

)
xyn−1 +

(
n−1
n−1

)
yn.

Thus the coefficient of xn−ryr for r = 1, . . . ,n−1 is
(

n−1
r

)
+
(

n−1
r−1

)
=
(

n
r

)

by Lemma 3. Since
(

n−1
0

)
= 1 =

(
n
0

)
,

(
n−1
n−1

)
= 1 =

(
n
n

)
,

we see that

(x + y)n =
(

n
0

)
xn + . . .+

(
n
r

)
xn−ryr + . . .+

(
n
n

)
yn,

which proves the Binomial Theorem by induction. ��

Exercises.

36. Prove that the sum of the elements of the nth row of Pascal’s triangle is 2n for
each n. (How many subsets of a set with n elements are there?)
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37. Prove that (
s
s

)
+
(

s+ 1
s

)
+ . . .+

(
n
s

)
=
(

n + 1
s+ 1

)

for all s and all n≥ s.

38. Prove that for all n≥ 1,

(
n
0

)2

+
(

n
1

)2

+ . . .+
(

n
n

)2

=
(

2n
n

)
.




